Abstract:
Examples disclosed herein relate to control of a drone. In one example, aerial movement of the drone is controlled. In the example, it is determined, based on a plurality of devices, whether the drone is within a line-of-sight with at least a respective one of a plurality of humans within a physical proximity to a respective one of a the devices. In the example, the devices are used by the drone to track the humans. In the example, when the drone is determined to lack the line-of-sight, aerial movement of the drone is controlled to move the drone to become within the line-of-sight.
Abstract:
A system and process for dynamically determining a route for an unmanned aerial vehicle (UAV) is provided. In one example, at a computer system including one or more processors and memory, the process includes receiving a route request, the route request including an origin location and destination location for a UAV, receiving geospatial information associated with the origin location and the destination location, the geospatial information comprising at least one of physical obstacles and no-fly zones, determining a route of the UAV from the origin location to the destination location based at least in part on the geo-spatial information, and causing the route to be communicated to the UAV.
Abstract:
Described embodiments include an unmanned aerial vehicle and a method. The unmanned aerial vehicle includes an airframe and a rotary wing system coupled with the airframe and configured to aerodynamically lift the vehicle in the air. The unmanned aerial vehicle includes a flight controller configured to control a movement of the vehicle while airborne. The unmanned aerial vehicle includes a cleansing controller configured to manage a removal of a surface contaminant from a selected portion of a surface of an external object using an airflow generated by the rotary wing system.
Abstract:
Discloses a transformable aerial vehicle (100) and a control method thereof. The transformable aerial vehicle (100) includes: a central body (10) and at least two transformable frame assemblies (20) respectively disposed on the central body (10), each of the least two transformable frame assemblies (20) having a proximal portion pivotally coupled to the central body (10) and a distal portion; an actuation assembly (13, 5) mounted on the central body (10) and configured to pivot the at least two transformable frame assemblies (20) to a plurality of different vertical angles relative to the central body (10); and a plurality of propulsion units (30) mounted on the at least two transformable frame assemblies (20) and operable to move the transformable aerial vehicle (100).
Abstract:
Verfahren zum Steuern eines unbemannten Drehflügelfluggeräts (8) zur Reinigung weitgehend glatter Flächen, wobei das Drehflügelfluggerät mit mindestens einem elektronischen Steuergerät (3), einer Vorrichtung zur Lokalisierung von weitgehend glatten Flächen (4), mindestens einem Energiespeicher sowie mindestens einer Reinigungsvorrichtung ausgestattet ist, und mindestens folgende Verfahrensschritte ausgeführt werden: - Fortbewegung des Drehflügelfluggeräts zu Ort in Nähe der weitgehend glatten Fläche; und - Erfassen der weitgehend glatten Fläche durch die Vorrichtung zur Lokalisierung; und - Anflug und Andocken mit der Reinigungsvorrichtung, auf die erfasste weitgehend glatte Fläche; und - Reinigen der weitgehend glatten Fläche mit der Reinigungsvorrichtung, indem mit dem elektronischen Steuergerät (3) das Drehflügelfluggerät so angesteuert wird, dass ein Anpressdruck und eine Fortbewegung in einer parallelen Richtung auf der erfassten weitgehend glatten Fläche ausgeführt werden.
Abstract:
A micro unmanned aerial vehicle or drone ("UAV") 10 is remotely controlled through an HMI (309), although this remote control is supplemented by and selectively suppressed by an on-board controller (302). The controller operates to control the generation of a sonar bubble that generally encapsulates the UAV. The sonar bubble, which may be ultrasonic in nature, is produced by a multiplicity of sonar lobes generated by specific sonar emitters associated with each axis of movement for the UAV. The emitters produce individual and beamformed sonar lobes (80-102) that partially overlap to provide stereo or bioptic data in the form of individual echo responses detected by axis- specific sonar detectors (40-68). In this way, the on-board controller is able to interpret and then generate 3-D spatial imaging of the physical environment in which the UAV is currently moving or positioned. The controller is therefore able to plot relative and absolute movement of the UAV through the 3-D space by recording measurements from on-board gyroscopes (342), magnetometers (344) and accelerometers (346). Data from the sonar bubble can therefore both proactively prevent collisions with objects by imposing a corrective instruction to rotors (12-18) and other flight control system and can also assess and compensate for sensor drift.
Abstract:
Discloses a transformable aerial vehicle (100) and a control method thereof. The transformable aerial vehicle (100) includes: a central body (10) and at least two transformable frame assemblies (20) respectively disposed on the central body (10), each of the least two transformable frame assemblies (20) having a proximal portion pivotally coupled to the central body (10) and a distal portion; an actuation assembly (13, 5) mounted on the central body (10) and configured to pivot the at least two transformable frame assemblies (20) to a plurality of different vertical angles relative to the central body (10); and a plurality of propulsion units (30) mounted on the at least two transformable frame assemblies (20) and operable to move the transformable aerial vehicle (100).
Abstract:
Discloses a transformable aerial vehicle (100) and a control method thereof. The transformable aerial vehicle (100) includes: a central body (10) and at least two transformable frame assemblies (20) respectively disposed on the central body (10), each of the least two transformable frame assemblies (20) having a proximal portion pivotally coupled to the central body (10) and a distal portion; an actuation assembly (13, 5) mounted on the central body (10) and configured to pivot the at least two transformable frame assemblies (20) to a plurality of different vertical angles relative to the central body (10); and a plurality of propulsion units (30) mounted on the at least two transformable frame assemblies (20) and operable to move the transformable aerial vehicle (100).