Abstract:
Novel methods that may be used for the manufacture of plant alkaloid compounds and novel polynucleotide compounds are provided. The plant alkaloid compounds are useful as medicinal compounds.
Abstract:
Methods for increasing specificity of RNA-guided genome editing, e.g., editing using CRISPR/Cas9 systems, using truncated guide RNAs (tru-gRNAs).
Abstract:
The present invention concerns a method for genetically transforming a Bifidobacterium strain comprising a step of methylation of a shuttle vector in an E. coli or a Gram-positive bacterium strain by two type II DNA methyltransferases from a Bifidobacterium: a methyltransferase enzyme that methylates the adenine base at position 4 of the nucleotide sequence RTCAGG and a methyltransferase enzyme that methylates the cytosine base at position 4 of the nucleotide sequence GGWCC. The present invention also concerns genetic tools and culture media useful for carrying out said method.
Abstract:
Methods and genetic sequences are described for use in determining the diagnosis, subtype, prognosis, and disease course of high-grade gliomas, such as glioblastoma multiforme. One such method includes determining increased expression of at least one gene on a chromosome segment in cells of the glioma, the segment being 17:57,851,812-17:57,973,757; 7:127,892,509-7:127,947,649; 12:33,854-12:264,310; or 19:33,329,393-19:35,322,055; and estimating, based on the expression, a predicted length of survival, a probability of survival, or a predicted response to a therapy for the glioma.
Abstract:
A microorganism of the genus Escherichia having enhanced L-amino acid productivity, wherein the microorganism is transformed to have an enhanced NAD kinase activity and an inactivated activity of an enzyme having an amino acid sequence of SEQ ID NO: 2 encoded by tehB gene and a method for producing L-amino acids using the microorganism of the genus Escherichia.
Abstract:
Methods and genetic sequences are described for use in determining the diagnosis, subtype, prognosis, and disease course of high-grade gliomas, such as glioblastoma multiforme. One such method includes determining increased expression of at least one gene on a chromosome segment in cells of the glioma, the segment being 17:57,851,812-17:57,973,757; 7:127,892,509-7:127,947,649; 12:33,854-12:264,310; or 19:33,329,393-19:35,322,055; and estimating, based on the expression, a predicted length of survival, a probability of survival, or a predicted response to a therapy for the glioma.
Abstract:
This disclosure relates to the isolation and sequencing of nucleic acid molecules that encode methyltransferase polypeptides from a Papaver somniferum cultivar; and uses in the production of noscapine and identification of poppy cultivars that include the genes that include these nucleic acid molecules.