Abstract in simplified Chinese:本发明提供一种绳索,包含一本体,该本体包含一股中心绳线与复数股缠绕绳线,该些缠绕绳线绕该中心绳线而于其周围排列,该些缠绕绳线由该中心绳线向外依序包含六股第一绳线、十二股第二绳线与十八股第三绳线,该第一绳线与该第二绳线之截面尺寸相同,该第一绳线或该第二绳线之截面尺寸大于该第三绳线之截面尺寸但小于该中心绳线之截面尺寸,该些缠绕绳索排列于中心绳索周围后绕该中心绳线一同缠绕,借此,本发明提供之绳索具有较佳的结构强度、适当的韧性与较小的允许长度变形量。
Abstract:
According to embodiments of the present invention, a stranded conductor is formed in which the occurrence of defects, such as strand unevenness of filaments and outward protrusion of filaments, is inhibited. According to embodiments of the present invention, a stranded conductor (1a) includes soft filaments (2a) stranded together. The soft filaments (2a) include a soft filament made of an aluminum material, disposed along a center (101), and include six soft filaments, twelve soft filaments, and eighteen soft filaments made of an aluminum material, disposed around and concentrically with the center. The filaments are softened filaments that are softened. A lay length (Pa) is from 6.2 times to 15.7 times a conductor diameter of the stranded conductor.
Abstract:
A hybrid strand includes a core and outer wires arranged around the core, wherein at least a part of the outer wires is compressed, wherein the compressed outer wires include a flattened cross-sectional shape, the outer wires are composed of steel, and the core is a fiber core. A corresponding production method produces such a hybrid strand.
Abstract:
An elevator system includes a car or platform to transport passengers and/or goods as well as a counterweight, which are arranged as traversable or movable along a travel path, and which are coupled and/or with a drive by a suspension element interrelating their motion. The suspension element is guided and/or driven by a traction sheave and/or a drive shaft and/or a deflecting pulley. The suspension element is a sheathed and/or belt-type, with a first layer made of a first plasticizable and/or elastomeric material and a second layer with a connection plane formed between the first and second layers. At least one tension member—rope-type, tissue-type, or comprising a multitude of partial elements—is embedded in an area of the connection plane, a majority of a surface of said at least one tension member directly contacting said first layer. A manufacturing procedure for one of the suspension elements is provided.
Abstract:
Metal cord (C-1) with three layers (C1, C2, C3), which is rubberized in situ, comprising a core or first layer (10, C1) of diameter d1, around which there are wound together in a helix at a pitch p2, in a second layer (C2), N wires (11) of diameter d2, around which there are wound together in a helix at a pitch p3, in a third layer (C3), P wires (12) of diameter d3, wherein the cord has the following characteristics (d1, d2, d3, p2 and p3 being expressed in mm): 0.08≦d1≦0.50; 0.08≦d2≦0.45; 0.08≦d3≦0.45; 5.1π(d1+d2)
Abstract:
Metal cord (C-1) with three layers (C1, C2, C3), which is rubberized in situ, comprising a core or first layer (10, C1) of diameter d1, around which there are wound together in a helix at a pitch p2, in a second layer (C2), N wires (11) of diameter d2, N varying from 5 to 7, around which there are wound together in a helix at a pitch p3, in a third layer (C3), P wires (12) of diameter d3, the said cord being characterized in that it has the following characteristics (d1, d2, d3, p2 and p3 being expressed in mm): 0.08≦d1≦0.40; 0.08≦d2≦0.35; 0.08≦d3≦0.35; 5π(d1+d2)
Abstract:
Method of manufacturing a metal cord with three concentric layers (C1, C2, C3), rubberized in situ, of M+N+P construction, comprising a first, internal, layer (C1) consisting of M wires of diameter d1, M varying from 1 to 4, around which there are wound together in a helix, at a pitch p2, in a second, intermediate, layer (C2), N wires of diameter d2, N varying from 3 to 12, around which there are wound together as a helix at a pitch p3, in a third, outer, layer (C3), P wires of diameter d3, P varying from 8 to 20, the said method comprising the following steps which are performed in line: an assembling step by twisting the N wires around the first layer (C1) in order to form, at a point named the “assembling point”, an intermediate cord named a “core strand” of M+N construction; downstream of the assembling point, a sheathing step in which the M+N core strand is sheathed with a rubber composition named “filling rubber” in the uncrosslinked state; an assembling step in which the P wires of the first layer (C3) are twisted around the core strand thus sheathed; a final twist-balancing step. Also disclosed is a device for implementing such a method.
Abstract:
It is an object of the present invention to reduce fretting between strands in a steel cord, to suppress reduction in cord strength caused by running, to enhance rubber penetrability, and to improve tire durability. The steel cord includes a cord main portion 19 of a triple layer-stranding structure including: a core 16 formed from one core strand f1, an inner sheath 17 including N (2 to 5) inner sheath strands f2 stranded with a stranding pitch Pi around the core; and outer sheath 18 formed from M (6 to 11) outer sheath strands f3 stranded with a stranding pitch Po around the inner sheath. Diameters of the strands f1, f2 and f3 are equal to each other, and stranding directions of the sheaths 17 and 18 are the same. A difference (|Ai−Ao|) between a stranding angle Ai of the inner sheath strand f2 and a stranding angle Ao of the outer sheath strand f3 is greater than 1° and smaller than 3°.