Abstract:
The present embodiment provides a hinge assembly of a refrigerator. The hinge assembly includes a bracket; a shaft rotatably supported by the bracket and providing a rotation center of a door; a transfer unit transferring selectively rotatory power of the door to the shaft in order to move the shaft upward and downward; and an operating unit operating the transfer unit.
Abstract:
The present invention provides a self-closing hinge to provide automatic closing of a hinged member in a slow fashion. The invention includes a generally cylindrical outer casing or housing that partially encloses a rotatable shaft that may be secured to a hinged member to effect the rotation thereof. The shaft is disposed within a recess in a cylindrical coupler that is engaged by the shaft during rotation in a first direction - generally an "open" rotational direction - and that engages the shaft to rotate it in a second direction - generally a "closed" rotational direction. The coupler is secured to a torsional spring that acts against the open rotation of the shaft, forcing the coupler to rotate in a closed direction. A rotatable inner casing, may be disposed within the outer casing in close proximity thereto, such that a high viscosity fluid may be disposed therebetween.
Abstract:
A speed controller for self-closing sliding doors for controlling the closing speed of an automatic self-closing sliding door, characterized by comprising a generator provided in conjunction with the sliding door, one-way motion transmitting means for converting a linear motion occurring when the sliding door is closed to a rotating motion to transmit it to the generator, an electric resistor connected to the output of the generator, and speed changing means for decreasing the resistance of the electric resistor and thereby changing the closing speed of the sliding door from a first predetermined speed to a second predetermined speed slower than the first one in a predetermined position before the closed position of the sliding door.
Abstract:
The invention pertains to a one- or two-leaf sliding, swinging or pocket door with electrical, pneumatic or hydraulic drive (10, 30), especially for vehicles. To avoid the risk of pinching due to built-in elements in the side closure region, the invention provides a spindle (12) to which the door leaf or leaves (1, 2) is/are connected by a nut (21, 32), with the spindle in the case of two-leaf doors being symmetrical to the center of the door and with the door drive producing either a rotational action in the spindle (12) or a linear action in the door (1). The spindle is fitted on one side with a free-wheel (23) and, preventing rotation of the fixed part of the free-wheel, an engaging and disengaging brake or coupling (24-28), thus avoiding a closing device in the side closure region.
Abstract:
A drive assembly configured to adjust a motor vehicle closure element including a clutch assembly provided with an input connection and an output connection. The clutch assembly includes a main braking element, configured to brake a movement from the output side, and a freewheel assembly configured to engage the main braking element from movement of the output side and disengage the main braking element by means of a movement from the input side. The brake assembly includes an auxiliary braking element configured to produce a predetermined permanent braking action by means of which the auxiliary braking element acts at least against the movement introduced on the output side, and that the predetermined permanent braking action of the auxiliary braking element has to be overcome to enable the freewheel assembly to disengage.
Abstract:
The invention concerns a drive unit for moving a door relative to a door's opening. The drive unit comprises a drive motor and a wheel transmission assembly arranged for transfer of power to a drive wheel configured for engagement with a running surface for moving the door. The wheel transmission comprises a transfer wheel driven by the drive motor. A movable wheel carrier comprises a first running wheel and a second running wheel arranged in in engagement with the transfer wheel. The movable wheel carrier is arranged for displacement between a free wheel position where the first and second running wheel are arranged disengaged from the drive wheel for no power transfer to occur from the drive motor to the drive wheel, at least one running position where either of the first and second running wheel is positioned in engagement with the drive wheel for the transfer of power from the drive motor to the drive wheel.
Abstract:
A damping mechanism that includes a housing having fluid disposed therein and an inner circumferential surface, an axle shaft that is rotatable with respect to the housing, and a first vane having a distal end and being pivotally associated with the axle shaft. When the axle shaft rotates in a first direction, the first vane pivots to a deployed position, and when the axle shaft rotates in a second direction, the first vane pivots to a stowed position. A first clearance is defined between the distal end of the first vane and the inner circumferential surface of the housing when the first vane is in the deployed position, and a second clearance is defined between the distal end of the first vane and the inner circumferential surface of the housing when the first vane is in the stowed position. The second clearance is greater than the first clearance.
Abstract:
The invention relates to a motor-driven device for actuating a movable panel (1) of a motor vehicle, including: a drive unit (3); a transmission element (5) which is to be set into motion by the motor unit (3); a braking module (7) for the transmission element (5), characterized in that the braking module (7) is connected to the transmission element (5) by a clutch module (9) positioned between the transmission element (5) and the drive unit (3), and comprising a wound spring (35) in friction contact with a brake shaft (23) connected to the braking module (7), as well as two coupling elements (25, 27) that are mutually engaged with a functional clearance therebetween, the relative change in position of said two coupling elements (25, 27) enabling the ends (37, 38) of said wound spring (35) to be controlled so as to switch the ends between an engaged position and a disengaged position of the braking module (7), wherein the two coupling elements (25, 27) are a drive element and a driven element, respectively.
Abstract:
A refrigerator comprises: a body having a storage chamber; a door for selectively shielding the storage chamber; a hinge coupling portion for hinge-coupling the door to the body; and a height control unit for lifting up or lowering the door by repeatedly opening and closing the door. Since the door has a controllable height by being opened and closed, a moment arm becomes longer than when using the conventional tool such as a spanner. This may allow the height of the door to be controlled by using less force. Since the height of the door is controllable at a user's eye height, the user may control the height of the door more rapidly and precisely without errors.
Abstract:
An anti-back drive system preferably includes a drive housing, a drive ring, a lock ring and an output pinion. The drive housing includes a drive counterbore. The drive housing is secured to an electric motor. The drive ring preferably includes a base member and a plurality of drive projections. The drive ring is secured to a drive shaft of the electric motor. The lock ring includes a plurality of inward facing cam surfaces and a plurality of inward facing loop projections. The output pinion includes a drive gear and a plurality of drive fingers, which extend radially outward from the output pinion. The plurality of inward facing cam surfaces are sized to receive an end perimeter of said plurality of drive fingers. A push on clip is secured to the drive shaft to retain the drive ring, the lock ring and the output pinion on the drive shaft.