Abstract:
A damper for the door of a cassette housing in a cassette tape recorder is formed by unrotatably inserting a resisting member provided with radially extended vanes around a support shaft protuberating from a base plate and setting the resisting member within a cup-shaped rotary member thereby allowing the vanes to slide frictionally on the inner wall surface of the rotary member. This damper is mounted in the machine proper of the recorder by fastening the resisting member to the machine proper through the medium of the fitting member and pivotally attaching the door to the rotary member by utilization of a rack and pinion. The opening and closing motion of the door is braked by the frictional slide of the resisting member on the inner wall surface of the rotary member. Thus, the shocks and vibration produced by the opening and closing motion of the door are abated.
Abstract:
Closing arrangement for sliding doors adapted to move between closed and open positions along a lengthwise guide track. The arrangement includes a rotor operatively connected with connecting links connected to the door and arranged to move along the guide track. Brake arrangement is mounted with a drive member mounted in coaxial alignment with the rotor shaft. The closing arrangement is provided with a coupling device which is operatively connected to the rotor shaft and comprises an electromagnetic coupling and a friction coupling mounted on a common shaft. The coupling device prevents an inadvertant backward movement of the open sliding door to its closed position.
Abstract:
A stationwagon vehicle body has a tailgate movable in an arcuate path between a lowered open position and a raised closed position. The tailgate is power actuated through a bi-directional drive mechanism which allows manual closing of the tailgate but prevents its manual opening.
Abstract:
975,070. Hinges. ATWOOD VACUUM MACHINE CO. Feb. 26, 1962 [Sept. 22, 1961], No. 7373/62. Heading E2F. A hinge, particularly for an automobile door, comprises a generally U-shaped outer member 13 and an inner member 18 pivoted on a pintle 24 between the limbs 11, 12 of the U, at least one of the edges 16, 17 of the inner member being provided with a friction area, preferably in the form of a pad 14, which is in frictional engagement with the inner surface of the adjacent limb of the outer member through at least a portion of the range of movement of the hinge, the said surface being so shaped that the frictional resistance to the movement of the hinge in the said portion of the range varies with the relative angular positions of the two members. In Fig. 3 the limbs are formed with ramps 10 which increase the frictional resistance as the door approaches its open position, but various combinations and arrangements of ramps are illustrated whereby the resistance can be increased, decreased or maintained constant at various stages of the movement. The pads 14 are fitted in recesses 15 in the member 18, ribs 42 being formed in the base of each recess to anchor the pads permanently in place. A rubber bumper 40 (not shown) may be fitted on a cross-brace 28 of the outer member to arrest the inner member in the open position. Specification 758,330 is referred to.
Abstract:
A hinged system includes a preassembled hinge module for pivotally coupling a first component to a second component. The preassembled hinge module includes a shaft, a torque element frictionally engaging the shaft, and a housing. The housing includes a cover, a side wall, and a rear wall that define an interior space enclosed within the housing. The interior space receives the torque element inside the housing. The cover defines a first aperture, and the rear wall defines a second aperture, the first aperture and the second aperture aligned with a pivot axis of the shaft. The shaft extends through at least the first aperture, the interior space, and the second aperture. The shaft is separate from, and configured to be mounted to, the first component. The housing is separate from, and configured to be mounted to, the second component.
Abstract:
A hinge for articulatedly connecting first and second components, with first and second hinge parts for fastening to the first and second components, respectively, with a first pivot arm which comprises a first articulation axis on the first hinge part and a second articulation axis on the second hinge part, wherein the first hinge part comprises a longitudinal guide for the first articulation axis of the first pivot arm, and with a second pivot arm which comprises a first articulation axis on the first hinge part and a second articulation axis on the second hinge part, wherein the first hinge part comprises a damping element, wherein the first pivot arm is connected to a braking element, wherein a setting element is provided which comprises a pressing part, which acts on the damping element, and an actuating part, wherein the actuating part is in an access hole of the first hinge part.
Abstract:
A friction based counterbalance mechanism for coupling with a closure panel to assist in opening and closing of the closure panel for at least a portion of a path between a fully closed position and a fully open position of the closure panel, the counterbalance mechanism including: an elongate member positioned on a longitudinal axis extending between the proximal and distal ends of the counterbalance mechanism, the elongate member having a peripheral surface, the elongate member having a proximal end for coupling to one of the closure panel and a body of a vehicle; a travel member having a body and at least one friction member mounted on the body, the travel member positioned on the longitudinal axis for reciprocation there along and for providing contact between the at least one friction member and the peripheral surface, said contact for generating a friction force in a first region along the longitudinal axis and in a second region along the longitudinal axis; and a support member coupled to the travel element at a proximal end and for coupling at a distal end to the other of the closure panel and a body of a vehicle, the support member for guiding said reciprocation. The friction based counterbalance mechanism can be incorporated as part of a biasing strut such as a spring configured strut.
Abstract:
A vehicle has a sliding door fitted with a rotatable brake member to apply a braking force to the sliding door when the vehicle is on a slope. The brake member is automatically rotated about a pivot axis X-X by a moveable member forming part of an actuator when the vehicle is resting on a slope into a position in which a braking force is applied to the sliding door by the interaction of the brake member with an elongate track in the form of a sliding door support track.
Abstract:
A damper mechanism has first and second rail members, a biasing member, and a slide member. The first rail member is fixed inside the opening/closing member along the up/down direction, and has an oblong guide hole formed therein extending along the longitudinal direction. The second rail member has fixed to a top end part thereof an engaging pin inserted through the guide hole, and has a bottom end part swingably supported on the apparatus main body. The biasing member biases the first and second rail members in a direction in which these approach each other. The slide member is made of resin fixed to the engaging pin, slides while in contact with the first rail member and the opening/closing member, and prevents contact between the engaging pin and an inner circumferential rim of the guide hole.