Abstract:
An electrophoretic record that includes at least one gel separation is mounted for motion laterally of the separation record. A light source is positioned to illuminate at least a portion of the record, and a linear array camera is positioned to have a field of view of the illuminated portion of the record and orthogonal to the direction of record motion. The elements of the linear array are scanned at increments of motion of the record across the field of view to develop a series of signals corresponding to intensity of light at each element at each scan increment.
Abstract:
A spectrmeter radiation transmission system is disclosed which permits concurrent availability of numerous alternative accessory devices by conserving radiation throughput. Parabolic reflectors are used to provide alternating collimated and confocal segments of radiation, thereby largely eliminating the problem of vignetting (i.e., loss of radiation throughput due to beam size expansion). Modular enclosure elements are provided, inside which the radiation path travels between the parabolic reflectors.
Abstract:
The invention relates to a lensless imaging device, comprising
an emitting part comprising a light source (1) configured to emit a light beam in a direction of emission and intended to follow an optical path, a receiving part incorporating an electronic circuit board (3) bearing a sensor (2) having a planar capture surface (20) intended to receive said light beam in a direction normal to said capture surface, said optical path being subdivided into several successive optical sections, each optical section corresponding to a distinct direction of propagation of the light beam.
Abstract:
The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.
Abstract:
A modular testing device includes a base unit and an expansion unit that communicates with the base unit. The expansion unit includes a housing, a receptacle in which a sample holder containing a biological sample and reagent mixture can be placed, and an optical assembly positioned in the housing. The optical assembly is configured to amplify and detect a signal from the biological sample and reagent mixture. Data that is collected in the optical assembly is communicated to the base unit.
Abstract:
The invention relates to a device and to a method for continuously measuring the hydrogen sulfide concentration of an off-gas by means of a detachable device suitable for being temporarily connected to equipment producing the off-gas. The method comprises a step of measuring the absorption of electromagnetic radiation by the off-gas. The device and method method can be used in particular to measure the hydrogen sulfide concentration in an off-gas produced during a step of sulfiding a hydroprocessing catalyst.
Abstract:
The invention provides a measuring device for analyzing a luminescent sample and, in particular, for measuring the concentration of at least one analyte in a luminescent sample, comprising: a housing with a sample receptacle space for accommodating a sample container; a sample container for accommodating the luminescent sample; a radiation receiver apparatus for receiving radiation emitted by the luminescent sample; and an evaluation apparatus for evaluating the radiation from the luminescent sample received by the radiation receiver apparatus. The invention moreover provides a measuring device comprising a base part and a measuring head arranged at the base part in an interchangeable manner, wherein the measuring head is embodied to analyze the luminescent sample or it is embodied as a spectrometer measuring head.
Abstract:
A wearable device includes a testing portion, the testing portion includes receiving space, a bottom surface defining an opening, an opposite top surface, and a first side surface defining a slot. A white light source is received in the receiving space. A wearable portion of the device is secured to the testing portion and the wearable portion can be placed around a terminal device comprising a camera. The opening faces the camera when the wearable portion is around the terminal device, allowing the camera to capture a standard image of the white light, and capture a wet image of a test paper imbued with user bio-matter when the test paper is inserted into the slot. A biological information of the user, as an indicator of health, is calculated according to a color comparison between the wet image and the standard image.
Abstract:
A measurement system includes detachable parts, on which one filter module out of a plurality of filter modules including optical filters that each transmit different types of special light is detachably mounted, a specification part that specifies the optical filter of the one filter module mounted on the detachable parts, and a set value switching part that switches, according to the specified optical filter specified by the specification part, set values for adjustment used in a measurement using a specific optical filter.
Abstract:
A laser gas analyzer includes a light emitter which emits a laser light irradiated onto a gas to be measured; a light receiver which receives a laser light which transmitted the gas to be measured; a plurality of optical-axis adjustment mechanisms, one of which is provided in the light emitter and the other one of which is provided in the light receiver; a main display which is provided in one of the light emitter and the light receiver and displays thereon the measured result acquired by receiving the laser light which transmitted the gas to be measured; and a sub-display which is provided in the other one of the light emitter and the light receiver and displays thereon a part of the measured result displayed on the main display.