Abstract:
A polarized light imaging apparatus is provided. In an embodiment, the apparatus comprises a light source for producing light beams; an illumination optic coupled to the light source for guiding the light beams towards the sample; a linear polarizer coupled to the illumination optic and configured to produce a linearly polarized light towards the sample respective of the light beams; a TIR birefringent polarizing prism (BPP) coupled to the sample to maximize a refraction difference between ordinary waves and extraordinary waves of light returning from the sample; and a detection optic unit coupled to the non-TIR BPP for guiding the light waves returning from the sample towards a single polarization sensitive sensor element (SE), the SE is configured to capture at least one frame of the sample respective of the light waves returning from the superficial single-scattering layer of the sample apart from the deeper diffuse layer.
Abstract:
A system and a method for optimizing an iris setting, used in combination with a lamp, for each excitation wavelength for each carousel run in an apparatus for identifying and measuring bacteria in biological samples. The system includes a feedback control loop positioned between a filter wheel and an optical cup for measuring the intensity level of the excitation wavelength, and feeding this information to an iris having an iris setting control device such that the iris setting may be adjusted based upon the measured intensity level to control and optimize the level of light fed to the filter wheel from the lamp. The iris setting can be adjusted so that the level of light fed to the filter wheel remains constant during the lifetime of the lamp and to ensure that the level of light fed to the sample remains below the level at which photo-bleaching occurs.
Abstract:
The invention relates to a sample analysis apparatus. The apparatus comprises: a radiation system to irradiate the sample in a vial and an analyser with a camera to analyse the radiation received from the sample in the vial. The apparatus is provided with a holder to releasable hold the vial and with an optical path for the radiation system to irradiate the sample and for the camera to make images of the sample. The radiation system can be used for front lighting of the sample in the vial or for back lighting of the sample in the vial. The camera may be provided with a telecentric lens.
Abstract in simplified Chinese:一种散射计对一目标结构之一或多个参数运行以绕射为基础之量测。为了并行地进行双色量测,运用具有一第一波长及一第一角度分布之第一辐射(302)及具有一第二波长及一第二角度分布之第二辐射(304)同时照明该结构。收集路径(CP)包括一经分段波长选择滤光器(21、310),其经配置以透射经绕射第一辐射(302X、302Y)及经绕射第二辐射(304X、304Y)之想要的高级部分,而同时阻挡该第一辐射及该第二辐射两者之零阶部分(302''、304'')。在一项实施例中,照明路径(IP)包括一匹配的经分段波长选择滤光器(13、300),该经分段波长选择滤光器经定向使得传递通过照明光学系统及收集光学系统之一零阶射线将取决于其波长而被该等滤光器中之一者或另一者阻挡。
Abstract:
An optical sensor system may include a light source. The optical sensor system may include a concentrator component proximate to the light source and configured to concentrate light from the light source with respect to a measurement target. The optical sensor system may include a collection component that includes an array of at least two components configured to receive light reflected or transmitted from the measurement target. The optical sensor system may include may a sensor. The optical sensor system may include a filter provided between the collection component and the sensor.
Abstract:
An image capture device may include a first spectral filter and a second spectral filter arranged so that a panoramic image capture operation captures light filtered by the first spectral filter and light filtered by the second spectral filter in a same region of a combined image and one or more processors to: capture a plurality of images based on the panoramic image capture operation; extract first information and second information from the plurality of images, wherein the first information is associated with the first spectral filter and the second information is associated with the second spectral filter; identify an association between the first information and the second information based on a feature captured in the plurality of images via the first spectral filter and the second spectral filter; and store or provide information based on the association between the first information and the second information.
Abstract:
Apparatus and methods relating to photonic bandgap optical nanostructures are described. Such optical nanostructures may exhibit prohibited photonic bandgaps or allowed photonic bands, and may be used to reject (e.g., block or attenuate) radiation at a first wavelength while allowing transmission of radiation at a second wavelength. Examples of photonic bandgap optical nanostructures includes periodic and quasi-periodic structures, with periodicity or quasi-periodicity in one, two, or three dimensions and structural variations in at least two dimensions. Such photonic bandgap optical nanostructures may be formed in integrated devices that include photodiodes and CMOS circuitry arranged to analyze radiation received by the photodiodes.
Abstract:
A method comprising at least one light source configured to generate a light of at least one wavelength and project the light over an optical path, a sample device, the device containing a sample obtained from exhalation of a person, a vortex mask configured to receive the light after the light passes through at least a portion of the sample device, the vortex mask including a series of concentric circles etched in a substrate, the vortex mask configured to provide destructive interference of coherent light received from the at least one light source, a detector configured to detect and measure wavelength intensities from the light in the optical path, the wavelength intensities being impacted by the light passing through the sample, the detector receiving the light that remained after passing through the vortex mask, and a processor configured to provide measurement results based on the wavelength intensities.