Abstract:
The present invention relates to DNA sequencing with reagent cycling on the wiregrid. The sequencing approach suggested with which allows to use a single fluid with no washing steps. Based on strong optical confinement and of excitation light and of cleavage light, the sequencing reaction can be read-out without washing the surface. Stepwise sequencing is achieved by using nucleotides with optically cleavable blocking moieties. After read-out the built in nucleotide is deblocked by cleavage light through the same substrate. This ensures that only bound nucleotides will be unblocked.
Abstract:
A method of inspecting a surface includes loading an inspection object on a stage of a multibeam inspection device configured to generate a beam array, and scanning a plurality of inspection areas of the inspection object at a same time with the beam array, wherein one of the first inspection areas is smaller than an area formed by a quadrangle connecting respective centers of corresponding four adjacent beams of the beam array, and an adjacent area of the one first inspection area is not scanned with the beam array.
Abstract:
A measurement device includes mechanical support elements (101-104) for supporting a sample well, other mechanical support elements (105-109) for supporting a measurement head (112) suitable for optical measurements, and a control system (111) configured to control the measurement head to carry out at least two optical measurements from at least two different measurement locations inside the sample well, where each measurement location is a center point of a capture range from which radiation is captured in the respective optical measurement. The final measurement result is formed from the results of the at least two optical measurements in accordance with a pre-determined rule. The use of the at least two optical measurements from different measurement locations reduces measurement variation in situations where the sample well (153) contains a piece (158) of sample carrier.
Abstract:
The present invention relates to digital pathology, and relates in particular to a digital pathology scanner illumination unit. In order to provide digital pathology scanning with improved illumination, a digital pathology scanner illumination unit (10) is provided that comprises a light source (12), a light mixing chamber (14), and a light diffuser (16). The light source comprises a plurality of light elements (18) that are arranged longitudinally along a linear extension direction. The mixing chamber comprises a transparent volume (22) providing a mixing distance (DM) between the plurality of the light elements and the light diffuser such that light with a uniform intensity is provided at a downstream edge (26) of the mixing chamber; and the mixing chamber is arranged, in terms of light propagation, between the plurality of the light elements and the light diffuser. Further, the light diffuser comprises a diffusing material such that the light is transformed into light that has uniformity at different angles, in particular low angles.
Abstract:
A method of inspecting a surface includes loading an inspection object on a stage of a multibeam inspection device configured to generate a beam array, and scanning a plurality of inspection areas of the inspection object at a same time with the beam array, wherein one of the first inspection areas is smaller than an area formed by a quadrangle connecting respective centers of corresponding four adjacent beams of the beam array, and an adjacent area of the one first inspection area is not scanned with the beam array.
Abstract:
In the scanning molecule counting method detecting light of a light-emitting particle in a sample solution using a confocal or multiphoton microscope, there is provided an optical analysis technique enabling the scanning in a sample solution with moving a light detection region in a broader area or along a longer route while making the possibility of detecting the same light-emitting particle as different particles as low as possible and remaining the size or shape of the light detection region unchanged as far as possible. In the inventive optical analysis technique, there are performed detecting light from the light detection region and generating time series light intensity data during moving the light detection region along the second route whose position is moved along the first route, and thereby, the signal indicating light from each light-emitting particle in a predetermined route is individually detected using the time series light intensity data.
Abstract:
A method and system for optically inspecting a manufactured part at a single inspection station having a measurement axis are provided. The system comprises a fixture assembly which includes a rotatable first fixturing component to support a part in a generally vertical orientation and a rotatable second fixturing component mating with and removably connected to the first fixturing component to transmit torque from the first fixturing component to the second fixturing component. The second fixturing component includes a device for holding the part in a generally horizontal orientation and to permit rotation of the horizontally held part about the measurement axis between first and second predetermined angular positions about the axis. The system also comprises an actuator assembly, a backside illumination assembly, a frontside illumination device, a lens and detector assembly and at least one processor to process electrical signals generated by the lens and detector assembly.
Abstract:
Provided are a multi-channel fluorescence detecting module and a nucleic acid analysis system including the multi-channel fluorescence detecting module. The nucleic acid analysis system includes: a plurality of loaders configured to accommodate a plurality of cartridges respectively, the cartridges comprising microfluidic devices; a transfer module including a linear actuator, the linear actuator including a movable unit configured to move linearly; and a fluorescence detecting module fixed to the movable unit, the fluorescence detecting module being configured to emit excitation light to the cartridges and detect fluorescence emitted from samples on the cartridges. The loaders are arranged in a row in a linearly moving direction of the movable unit.
Abstract:
An in situ inspection system and method to inspect a honeycomb body skin in a skinning system. The inspection system includes a line illuminator to generate a line illumination on the skin perpendicular to an axial direction of the honeycomb body travel, and a detector to detect the line illumination scattered from the skin and generate a signal based on the detected line illumination. A controller is configured to receive the signal generated by the detector, compare the received signal to a previously stored defect free signal in real-time, and control at least one skinning process parameter based on the comparison. The method includes in situ inspecting the skin and controlling at least one skinning process parameter based on the inspection. In the method, the in situ inspection includes illuminating a line of the skin perpendicular to the axial direction and detecting the illuminated line scattered from the skin.
Abstract:
A surface scanning wafer inspection system with independently adjustable scan pitch and associated methods of operation are presented. The scan pitch may be adjusted independently from an illumination area on the surface of a wafer. In some embodiments, scan pitch is adjusted while the illumination area remains constant. For example, defect sensitivity is adjusted by adjusting the rate of translation of a wafer relative to the rate of rotation of the wafer without additional optical adjustments. In some examples, the scan pitch is adjusted to achieve a desired defect sensitivity over an entire wafer. In other examples, the scan pitch is adjusted during wafer inspection to optimize defect sensitivity and throughput. In other examples, the scan pitch is adjusted to maximize defect sensitivity within the damage limit of a wafer under inspection.