Abstract:
The device comprises a layer of silicon (3) separated from a substrate (1) by a layer of insulating material (2). A rib (4) having an upper surface (4A) and two side surfaces (4B, 4C) is formed in the layer of silicon (3) to provide a waveguide for the transmission of optical signals. A lateral doped junction (7, 9, 8) is formed between the side surfaces (4B, 4C) of the rib (4) such that an electrical signal can be applied across the junction (7, 9, 8) to control the density of charge carriers across a substantial part of the cross-sectional area of the rib (4) thereby actively altering the effective refractive index of the waveguide.
Abstract:
An optical guided-wave device with an electro optic effect is comprised of first (1) and second substrates (2) having first and second refractive indices wherein the second refractive index is larger than the first one. These substrates are made of a single crystal dielectric material such as lithium tantalate or lithium niobate and, if they are made of the same material, they have different crystal orientations resulting in different refractive indices. These substrates are physically bonded directly or via a thin film such as glass, silicon, silicon oxide or silicon nitride and then, the second substrate (2) is thinned and worked to form a wave guide (3) therein.
Abstract:
An optical modulator is disclosed. The modulator (10) is based upon an ARROW waveguide, consisting of a substrate (12), a lower cladding (16), an interference layer (18), and a core layer (20). An electronic element (14) is formed in the structure to control the free-carrier concentration in the interference layer (18). The light is coupled by gratings (22,24) into the interference layer (18), where the free-carrier concentration is controlled by the element (14), which in turn controls the modulation of the light in the interference layer (18) before it is coupled back to the core (20) layer.
Abstract:
A light modulation device comprises a substrate (1), a substrate layer (2), an optical waveguide layer (3) and buffer layers (4), in that order, formed of either all n-type or all p-type compound semiconductor crystal. In orderto capture the light in the optical waveguide layer, the composition ratio of the compound semiconductor is so determined that the refractive index is at least approximately 0.1% higher in the optical waveguide layers than in the substrate layer and in the buffer layers. Furthermore, the carrier density is low in the optical waveguide layer and in the buffer layers, so that the applied voltage is effectively applied mainly to the optical waveguide layer. Due to the construction of the light modulation device, strict control of the etching process is not required, the device has a low absorption loss of light, and it can be made as a monolithic optical integrated circuit.
Abstract:
Provided are a semiconductor optical modulator and a semiconductor Mach-Zehnder optical modulator of high efficiency and high reliability. The semiconductor optical modulator 10 of the present invention includes a substrate 11; a first n-type cladding layer 12; a semiconductor optical modulation layer 13; a p-type cladding layer 14; a second n-type cladding layer 15; a passivation film 19; and an electric field-relaxing layer 16, wherein the first n-type cladding layer 12, the semiconductor optical modulation layer 13, the p-type cladding layer 14, and the second n-type cladding layer 15 are laminated on the substrate 11 in this order to form a waveguide structure, the passivation film 19 is arranged at the side surfaces of the waveguide structure, the electric field-relaxing layer 16 is interposed between the p-type cladding layer 14 and the second n-type cladding layer 15, and an impurity concentration of the electric field-relaxing layer 16 is lower than that of the p-type cladding layer 14 and that of the second n-type cladding layer 15.