Abstract:
A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
Abstract:
In accordance with one specific embodiment of the present invention, the closed drift hollow cathode comprises an axisymmetric discharge region into which an ionizable gas is introduced, an annular electron emitting cathode insert disposed laterally about that discharge region, a surrounding enclosure, an aperture in that enclosure disposed near the axis of symmetry and at one end of that region, and a magnetic field within that region which is both axisymmetric and generally disposed transverse to a path from the cathode insert to the aperture. An electrical discharge is established between the cathode insert and the enclosure. The electrons emitted from the cathode insert drift in closed paths around the axis, collide with molecules of ionizable gas, and sustain the discharge plasma by generating additional electron-ion pairs. Ions from the plasma bombard the cathode insert, thereby maintaining an emissive temperature. Electrons from the plasma diffuse to and escape through the aperture to provide the electron emission. The closed drift nature of the discharge circumferentially distributes the heating of the cathode insert and the utilization of the electron emitting capabilities thereof. The discharge current controls the maximum value of the electron emission.
Abstract:
A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
Abstract:
A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
Abstract:
A high energy level electronic device is segregated into source diode and utilization diode portions, portions which may also be identified as cathode and main diode portions, respectively. The cathode diode portion is operated at a low voltage such that closure velocity effects therein although present, are minimized. A current of electrons, generated by in cathode diode plasma is fed to the second diode through an anode screen portion of the cathode diode. In this arrangement, since there are electrons, but no plasma cathode present in the main diode, no closing problem occurs therein. In this arrangement, therefore the cathode diode is effectively a source of current for the main diode and is operated at minimal voltage to enable the provision of current for a maximum length of time prior to closure effect terminations. The main diode is separated from the plasma and therefore may be operated at any arbitrarily high voltage free from closing effects, which remain isolated and controlled in the cathode diode. Separate pulse forming network energization of the cathode and main diode portions of the device are also disclosed.
Abstract:
A surface discharge plasma cathode electron beam generating assembly (1) includes an anode (2) maintainable at a substantially constant first potential, a cathode device (3) having a first electrically conductive member (4), a dielectric member (5) at least partially surrounding the first member (4) and electrically conductive means (6) located on the outer surface of the dielectric member (5) and insulated therefrom. A capacitative divider circuit (7) is provided for maintaining the first electrically conductive member (4) at a second potential different from the first potential and for maintaining the electrically conductive means (6) at a high negative third potential relative to the first and second potentials.
Abstract:
An improvement for a vacuum tube or a plasma tube comprises a cathode loop formed of a material suitable for induction heating. A support structure mounted inside the vacuum tube supports the cathode loop at a cathode position. A power supply mounted outside the vacuum tube includes an induction coil wrapped around the tube near the cathode position and generates an alternating electromagnetic field at the cathode position to induce heat in the cathode loop so that electrons are released into the vacuum tube. Finally, a DC bias is applied to the cathode through the support structure. The improved plasma tube with an induction heated cathode is particularly useful for an ion laser gain medium.
Abstract:
Restorable cold cathode in a gas discharge electron ion gun in which the eroded material in the active surface of the cathode is restored by supplying new material in the form of a wire which is moved through a hole in the cathode body by means of a screw spindle.