Abstract:
Detector data representative of an intensity of light that impinges on a detector after being emitted from a light source and passing through a gas over a path length can be analyzed using a first analysis method to obtain a first calculation of an analyte concentration in the volume of gas and a second analysis method to obtain a second calculation of the analyte concentration. The second calculation can be promoted as the analyte concentration upon determining that the analyte concentration is out of a first target range for the first analysis method.
Abstract:
Frequency registration deviations occurring during a scan of a frequency or wavelength range by a spectroscopic analysis system can be corrected using passive and/or active approaches. A passive approach can include determining and applying mathematical conversions to a recorded field spectrum. An active approach can include modifying one or more operating parameters of the spectroscopic analysis system to reduce frequency registration deviation.
Abstract:
A laser spectrometer can be operated for analysis of one or more analytes present in a combustible gas mixture. The spectrometer can include one or more features that enable intrinsically safe operation. In other words, electrical, electronic, thermal, and/or optical energy sources can be limited within an hazardous area of the spectrometer where it is possible for an explosive gas mixture to exist.
Abstract:
Background composition concentration data representative of an actual background composition of a sample gas can be used to model absorption spectroscopy measurement data obtained for a gas sample and to correct an analysis of the absorption spectroscopy data (e.g. for structural interference and collisional broadening) based on the modeling.
Abstract:
A reference harmonic absorption curve of a laser absorption spectrometer can have a reference curve shape derived from a reference signal generated by the detector in response to light passing from the laser light source through a reference gas or gas mixture. The reference gas or gas mixture can include one or more of a target analyte and a background gas expected to be present during analysis of the target analyte. One or more portions of a test harmonic absorption curve having a test curve shape is compared with one or more portions of the reference harmonic absorption curve arising due to absorption of the background gases and not by absorption of the target analyte. Operating and/or analytical parameters of the laser absorption spectrometer are adjusted to correct the test curve shape to reduce the difference between the test curve shape and the reference curve shape.
Abstract:
A sample cell can be designed to minimize excess gas volume. Described features can be advantageous in reducing an amount of gas required to flow through the sample cell during spectroscopic measurements, and in reducing a time (e.g. a total volume of gas) required to flush the cell between sampling events. In some examples, contours of the inners surfaces of the sample cell that contact the contained gas can be shaped, dimensioned, etc. such that a maximum clearance distance is provided between the inner surfaces at one or more locations. Systems, methods, and articles, etc. are described.
Abstract:
A spectrometer cell can include a spacer, at least one end cap, and at least one mirror with a reflective surface. The end cap can be positioned proximate to a first contact end of the spacer such that the end cap and spacer at least partially enclose an internal volume of the spectrometer cell. The mirror can be secured in place by a mechanical attachment that may include attachment materials that are chemically inert to at least one reactive gas compound, be thermally stable above at least 120 °C, and be capable of holding an optical axis of the reflective surface in a fixed orientation relative to other components of the spectrometer cell and or a spectrometer device that comprises the spectrometer cell. The mirror can optionally be constructed of a material such as stainless steel, copper, aluminum, alumino-silicate, ceramic, or the like. Related methods, articles of manufacture, systems, etc. are described.
Abstract:
A reference harmonic absorption curve of a laser absorption spectrometer, which can include a tunable or scannable laser light source and a detector, can have a reference curve shape and can include a first, second, or higher order harmonic signal of a reference signal generated by the detector in response to light passing from the laser light source through a reference gas or gas mixture. The reference gas or gas mixture can include one or more of a target analyte and a background gas expected to be present during analysis of the target analyte. The reference harmonic absorption curve can have been determined for the laser absorption spectrometer in a known or calibrated state. A test harmonic absorption curve having a test curve shape is compared with the reference harmonic absorption curve to detect a difference between the test curve shape and the reference curve shape that exceeds a predefined allowed deviation and therefore indicates a change in an output of the laser light source relative to the known or calibrated state. One or more operating and/or analytical parameters of the laser absorption spectrometer are adjusted to correct the test curve shape to reduce the difference between the test curve shape and the reference curve shape.