Abstract:
본 발명은 분리능이 있는 수소 이온 교환 복합막, 복합 용액, 그 제조방법 및 이를 포함하는 연료전지에 관한 것으로서, 본 발명에 따른 이온 교환 복합막은 배리어 물질인 클레이 또는 유기화된 유기 클레이가 이온 전도성 고분자 필름에 분산되어 있는 구조를 갖고 있다. 이러한 이온 교환 복합막은 메탄올을 선택적으로 차단하면서도 수소 이온의 확산에 큰 저하가 없으며, 또한 비용면에서도 유리한 장점을 가지고 있다. 따라서, 본 발명의 이온 교환 복합막은 메탄올을 연료로 하는 직접 메탄올 연료전지에 유용하게 사용될 수 있다.
Abstract:
본 발명은 고분자 연료전지의 제조방법 및 이 방법으로 제조된 고분자 연료전지에 관한 것으로서, a) 에너지가 0.1 내지 2.0 keV인 이온빔을 고분자 전해질 막에 조사하여 막의 표면에 요철을 형성시키는 단계,b) 촉매 슬러리를 제조하는 단계, c) 상기 고분자 전해질 막의 양쪽 면에 상기 촉매를 코팅시켜 애노드와 캐소드 전극을 형성시키는 단계 및 d) 상기 형성된 전극의 외부에 탄소섬유로 만들어진 기체 확산층을 위치시키는 단계로 표면적이 큰 고분자 전해질 막의 양쪽 표면에 촉매층을 코팅하여 제조된 전극을 포함함으로써 소량의 촉매로 성능이 우수한 연료전지를 제조할 수 있다.
Abstract:
PURPOSE: A separation plate for a fuel cell is provided, to allow the gas to flow uniformly and the components for a fuel cell to be fixed easily and to minimize the loss of the generated current. CONSTITUTION: The separation plate(11) has the gas path(12) which has the repeated zigzag-structured pattern and contains at least one linear bar. The linear bar is repeatedly arranged in the zigzag-structured gas path by a group comprising a plurality of the linear bars. Preferably a reference hole(13) is set for fixing the position of components when a fuel cell is engaged. Preferably an output line(14) for obtaining the current generated at the fuel cell is directly set to the separation plate for allowing the output path of the generated current to be the shortest path.
Abstract:
PURPOSE: A method and a system for coating metal corrosion preventing film on separator for MCFC using pack cementation are provided to easily control thickness of the metal corrosion preventing film and recycle the metal powder by separately supplying metal powder and metal halide powder and supplying high purity hydrogen. CONSTITUTION: In a system for coating a metal corrosion preventing film on stainless steel separator(10) for MCFC (molten carbonate fuel cell) using pack cementation, the system comprises reactor(7) in which metal powder(9) contacted separator for MCFC is installed; electric furnace(8) for heating the reactor; hydrogen storage tank(1) for supplying low purity hydrogen to the film separation unit; film separation unit(2) in which Pd series film(3) is coated to supply high purity hydrogen into the reactor; gas supply tube(11) connected to the inside of the reactor to supply high purity hydrogen into the reactor; and sublimator(5) which is positioned at the middle of hydrogen supply line on the outer part of the reactor, and in which metal halide(6) is contained, the system further comprises ball flow meter(4) for supplying the high purity hydrogen in a fixed flow rate, wherein the metal is aluminum or chromium, wherein the reactor is sealed by lid(13) and graphite gasket(14) so that external gas is not penetrated into the reactor, and wherein a space(12) is formed between the hydrogen supply tube and reactor so that hydrogen supplied is exhausted through the space.
Abstract:
PURPOSE: A method for operating a polymer electrolyte fuel cell below the freezing point of water and its apparatus are provided, to prevent the deterioration of properties of a membrane-electrode assembly by inhibiting the freezing of water of the membrane-electrode assembly, thereby improving the stability of the fuel cell even at a temperature below the freezing point of water. CONSTITUTION: The method comprises the steps of flowing a dry gas for several seconds and charging a solution having a low freezing point into the anode of the fuel cell before the temperature drops below the freezing point water when the polymer electrolyte fuel cell is stopped after operation. Preferably the solution having a low freezing point is methanol, ethylene glycol, ethanol or butanol. The polymer electrolyte fuel cell is operated with flowing only dry gas when it is re-operated at a temperature below the freezing point of water and its is operated with flowing the moist gas normally when the temperature increases over the freezing point of water.
Abstract:
PURPOSE: Provided is a process for producing a LiCoO2 coated air-electrode for a molten carbonate fuel cell(MCFC), which can prevent NiO, being a main material of the air-electrode, from dissolving in an electrolyte, therefore, can produce the air-electrode having long lifetime than the conventional air-electrode for the MCFC. CONSTITUTION: The process for producing the LiCoO2 coated air-electrode for the MCFC comprises the steps of: dissolving lithium salts and cobalt salts in water; adding a chelate agent such as polyethylene glycol to the produced water solution to produce sol; soaking a NiO electrode for the MCFC in the produced sol and forming gel on the surface of pores of the electrode; drying and calcining the electrode. And another process for producing the LiCoO2 coated air-electrode for the MCFC comprises the steps of: dissolving the lithium salts and cobalt salts in a solvent; impregnating the pores of the NiO electrode with the solution; drying and calcining the electrode.
Abstract:
PURPOSE: A method for manufacturing a composite polymer electrolyte membrane for a polymer electrolyte membrane fuel cell is provided to manufacture a composite polymer membrane which is thin, and has high ionic conductivity and physical strength by impregnating a porous membrane with polymer electrolyte resin in a form of perfluorosulfonyl halogen compound using various methods. CONSTITUTION: The method comprises the steps of impregnating an inert porous polymer membrane with a perfluorosulfonyl halogen compound resin; and converting the impregnated perfluorosulfonyl halogen compound into sulfuric acid by sequentially treating high temperature alkaline solution, sulfuric acid solution and ultra pure water on the coated polymer membrane, wherein the porous polymer membrane has a porosity of 30 to 90%, a pore size of 0.05 to 5.0 microns and a thickness of 10 to 150 microns, and is selected from the group consisting of porous polytetrafluoro-ethylene membrane, polypropylene membrane, polyethylene membrane and polyvinylidene fluoride membrane, wherein the impregnating step is carried out in a method selected from the group consisting of a spraying, painting, tape casting, screen painting, dipping, calendering and doctor blade method at a temperature of 230 to 320 deg.C, wherein the method further comprises the steps of coating an electrolyte film on the surface of the manufactured composite electrolyte membrane and heating the electrolyte film coated composite electrolyte membrane in ultra pure water or vapor having a temperature of 80 to 150 deg.C for 1 or more hours, and wherein the electrolyte film is selected from the group consisting of perfluorosulfonyl fluoride and a polymer material in which an alkali metal ion such as sodium or potassium is substituted for perfluorosulfonic acid, perfluorocarboxylic acid, polystyrene sulfonic acid, polystyrene carboxylic acid or a mixture thereof, the coated film has a thickness of 1 to 50 microns, and the method for additionally coating the film is performed by a method selected from the group consisting of spraying, painting, tape casting, screen painting and dipping.