Abstract:
Provided is an ion beam treatment device. The treatment device includes a positive ion generation target which includes a positive ion generation thin film and nanowires on at least on side of the positive ion generation target, and a laser which irradiates laser beams to the nanowires by projecting positive ions to the tumor region of a patient by generating positive ions on the positive ion generation thin film. The nanowires can include a metal nanocore and a polymeric shell which surrounds the metal nanocore. A laser beam irradiated to the nanowires forms surface plasmon resonance. A proximity field reinforced with surface plasmon resonance more than the intensity of a laser beam is formed. Positive ion are released from the positive ion generation thin film by the proximity field.
Abstract:
PURPOSE: A target for generating ions and a treatment device using the same are provided to generate protons having high energy or carbon ions as the target has an ultra-thin film of a bubble form. CONSTITUTION: A target for generating ions includes an ion generating material capable of generating ions by incident laser beams (155) and forming hemispherical bubbles (130b); and a supporting unit supporting the bubbles. The ions are protons or carbon ions. If the ions are protons, the ion generating material is water. If the ions are carbon ions, the ion generating material is oil including carbon components. The supporting unit is transparent board or a ring-shaped bubble support. The thickness of an ultra-thin film in which the bubbles form is regulated by the viscosity of the ion generating material. A treatment device having the target includes a bubble generating member for forming bubbles by using the ion generating material on the supporting unit; and a laser unit (150) for radiating the laser beams to the surface (140) of the bubbles. A tumor of a patient is irradiated with the ions generated by the ion generating material.
Abstract:
PURPOSE: A scintillation detecting module and a positron emission tomography using the same are provided to measure high resolution by using a small amount of radioactive materials. CONSTITUTION: A first scintillation detecting layer (111) includes a plurality of scintillators which are extended in a first direction. A second scintillation detecting layer (112) includes a plurality of scintillators (112a) which are extended in a second direction. The second scintillation detecting layer is laminated on the first scintillation detecting layer in a third direction. The outer walls of the scintillators totally reflect gamma rays. The second scintillation detecting layer includes a plurality of detectors (112b) which are connected to the scintillators. [Reference numerals] (AA) Gamma line
Abstract:
PURPOSE: A demultiplexer and a method for separating cancer cell from blood are provided to separate cancer cells according to the kind of cancer by controlling magnetic force of ferromagnetism pattern or its flux after putting blood sample in a micro channel. CONSTITUTION: A demultiplexer (100) comprises: a channel (2) in which mixed liquid flows; and a ferromagnetism pattern (3) arranged under the bottom surface of the channel. The flux of the mixed liquid, or the magnetic force of the ferromagnetism pattern are changed according to the direction of the channel. A method for separating cancel cell from blood comprises the steps of: manufacturing mixed liquid comprising cancer cells combined with magnetic nano particle by mixing object blood with the magnetic nano particle which is combined with antibody specifically reacting with the cancer cell; putting the mixed liquid in the channel of which the ferromagnetism patterns are arranged on the bottom surface; and catching the cancer cells according to the kind by controlling the flux of the mixed liquid, or changing the magnetic force of the ferromagnetism pattern in the channel.
Abstract:
탄소 이온 발생 장치 및 이를 이용한 종양 치료 장치가 제공된다. 상기 종양 치료 장치는 탄소 나노 구조체의 일단으로부터 탄소 원자의 방출을 유도하는 탄소 방출 구조체, 방출된 탄소 원자를 이온화시키는 이온화 구조체 및 이온화된 탄소 원자를 가속시키는 가속기를 포함할 수 있다.
Abstract:
본 발명은 단일세포 분주용 어레이 장치에 관한 것으로, 유체에 포함된 단일세포를 분리하기 위한 하나 이상의 공간이 형성된 유체채널; 상기 유체채널에 형성된 공간의 입구 및 출구의 상부에 위치하여 상기 유체채널 내의 유체 흐름을 제어하기 위한 공기밸브채널; 상기 유체채널에 형성된 공간의 상부에 위치하여 상기 공간에서 분리된 단일세포를 분주하기 위한 가압채널; 및 상기 유체채널에 형성된 공간의 내부에 설치되어 상기 유체채널을 흐르는 유체에 포함된 단일세포를 분리하는 세포 트랩용 구조물을 포함하여 구성된다. 단일세포 분주, 어레이, 미소유체
Abstract:
본 발명은 미세 필터의 제조 방법을 제공한다. 이 방법은 제 1 폭의 돌출부를 가지는 몰드를 형성하는 단계; 기판의 일면 상에 필터막을 형성하는 단계; 상기 필터막 상에 레지스트막을 코팅하는 단계; 상기 돌출부가 상기 레지스트막을 통해 상기 필터막과 닿도록 상기 몰드로 찍어 상기 레지스트막에 제 1 개구부를 형성하는 단계; 상기 레지스트막을 식각마스크로 이용하여 상기 필터막을 식각하여 상기 기판을 노출시키는 제 2 개구부를 형성하는 단계; 상기 레지스트막을 제거하는 단계; 및 상기 일면과 반대되는 면 쪽의 상기 기판의 일부를 제거하여 상기 필터막의 상기 개구부를 노출시키는 단계를 포함한다. 이 방법으로 리소그래피 공정으로 구현가능한 선폭보다 좁은 폭의 개구부를 가지는 미세한 필터를 재현성있게 경제적으로 제조할 수 있다. 바이오 분자 필터, 나노 구조, 나노임프린팅, 실리콘, 미세분석시스템
Abstract:
본 발명에 따른 미세 바늘의 제조 방법은 일정한 단면을 가지며, 길이 방향으로 긴 중공심을 코팅액으로 코팅하고, 고형화하여 코팅층을 형성하는 단계, 상기 코팅층 표면에 시드 금속을 증착하는 단계, 상기 시드 금속 표면에 금속 도금을 수행하여 도금층을 형성하는 단계, 상기 도금층이 형성된 상기 중공심을 상기 길이 방향과 경사지게 잘라 표면경사를 형성하는 단계, 그리고 상기 중공심 및 코팅층을 제거하여 할로우를 형성하는 단계를 포함한다. 따라서, 최소 통증 제어가 가능하도록 직경, 길이, 경도, 경사각을 모두 갖추는 할로우 미세 바늘을 제작할 수 있으며, 중공심을 사용함으로써 바늘의 수직성과 바늘 내경의 균일성이 보장된다. 할로우, 마이크로 니들, 미세 바늘, 미세 실, 물유리
Abstract:
PURPOSE: A microfluid control device for measuring glycosylated hemoglobin and a method for operating the same are provided to enable effectively quantitation of the glycosylated hemoglobin using trace of blood. CONSTITUTION: A microfluid control device for meausring glycosylated hemoglobin comprises: a first substrate(100); a first injection part(101) for injecting a blood sample; a second injection part(102) for injecting glucose enzyme; a glucose acid filter unit(103) which is connected to the first and second injection parts and collects glucose acid generated by reaction of the blood sample and glucose enzyme; a sensing chamber(104) which is connected to the glucose acid filter unit and electrochemically measures the concentration of hemoglobin and glycosylated hemoglobin in the blood sample; a discharge unit(105) for discharging the blood sample; a valve part(107) which controls the fluid flow between the sensing chamber part and discharging unit; and a second substrate(200) having a pump part(108).
Abstract:
PURPOSE: A method and a device for measuring a size of a micro-particle is provided to easily measure a size of a micro-particle dissolved in solution by using a Mie scattering theory and a spectroscope. CONSTITUTION: A method for measuring a size of a micro-particle is as follows. A extinction spectrum of a medium in which micro-particles are dispersed is measured(S1). An average size of the micro-particles is measured based on the measured extinction spectrum and a Mie scattering theory. The maximum and minimum values of the extinction efficiency are obtained from the extinction spectrum(S2). The maximum and minimum values of the extinction efficiency are corresponded to the Mie scattering theory so that the size of the micro-particle is measured(S3).