Fused silica glass and process for producing the same
    162.
    发明授权
    Fused silica glass and process for producing the same 有权
    熔融石英玻璃及其制造方法

    公开(公告)号:US08211817B2

    公开(公告)日:2012-07-03

    申请号:US12440683

    申请日:2007-09-11

    Abstract: Fused silica glass having an internal transmittance of UV with 245 nm wavelength, being at least 95% at 10 mm thickness, a OH content of not larger than 5 ppm, and a content of Li, Na, K, Mg, Ca and Cu each being smaller than 0.1 ppm. Preferably the glass has a viscosity coefficient at 1215° C. of at least 1011.5 Pa·s; and a Cu ion diffusion coefficient of not larger than 1×10−10 cm2/sec in a depth range of greater than 20 μm up to 100 μm, from the surface, when leaving to stand at 1050° C. in air for 24 hours. The glass is made by cristobalitizing powdery silica raw material; then, fusing the cristobalitized silica material in a non-reducing atmosphere. The glass exhibits a high transmittance of ultraviolet, visible and infrared rays, has high purity and heat resistance, and exhibits a reduced diffusion rate of metal impurities, therefore, it is suitable for various optical goods, semiconductor-production apparatus members, and liquid crystal display production apparatus members.

    Abstract translation: 具有245nm波长的UV的内部透射率,10mm厚度至少95%,OH含量不大于5ppm,Li,Na,K,Mg,Ca和Cu的含量的熔融石英玻璃 小于0.1ppm。 优选地,玻璃的1215℃下的粘度系数至少为1011.5Pa·s; 在大于20μm至100μm的深度范围内的Cu离子扩散系数不大于1×10 -10 cm 2 / sec,在1050℃在空气中放置24小时时, 。 玻璃由粉状二氧化硅原料碎片化制成; 然后将非平衡二氧化硅材料在非还原气氛中熔融。 该玻璃的紫外线,可见光和红外线的透射率高,纯度高,耐热性高,金属杂质的扩散速度降低,因此适用于各种光学制品,半导体制造装置部件和液晶 展示生产设备成员。

    Low loss optical fiber designs for confining optical power to low-doped regions
    166.
    发明授权
    Low loss optical fiber designs for confining optical power to low-doped regions 有权
    低损耗光纤设计用于将光功率限制在低掺杂区域

    公开(公告)号:US08073301B2

    公开(公告)日:2011-12-06

    申请号:US12381302

    申请日:2009-03-10

    Abstract: The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.

    Abstract translation: 本说明书描述了通过混合VAD / MCVD工艺生产的改进的光纤。 使用VAD制造纤维的芯,并且内包层具有凹陷指数,并且使用MCVD制造。 在优选实施例中,光功率包层基本上完全包含在VAD生产的芯材料中,并且MCVD产生凹陷的折射率包层材料。 通过将大部分光功率限制在其中OH存在低的VAD核心以及通过使未掺杂二氧化硅区域中的光功率最大化来将光损耗最小化。 MCVD衬底管材料基本上没有光学功率。

    MCVD optical fiber method with partial removal of substrate tube
    167.
    发明授权
    MCVD optical fiber method with partial removal of substrate tube 有权
    MCVD光纤法部分去除衬底管

    公开(公告)号:US07946134B2

    公开(公告)日:2011-05-24

    申请号:US12799561

    申请日:2010-04-27

    Abstract: The specification describes methods for the manufacture of very large optical fiber preforms wherein the core material is produced by MCVD. Previous limitations on preform size inherent in having the MCVD starting tube as part of the preform process are eliminated by removing the MCVD starting tube material from the collapsed MCVD rod by etching or mechanical grinding. Doped overcladding tubes are used to provide the outer segments of the refractive index profile thus making most effective use of the MCVD produced glass and allowing the production of significantly larger MCVD preforms than previously possible.

    Abstract translation: 该说明书描述了用于制造非常大的光纤预制件的方法,其中芯材料通过MCVD制造。 通过蚀刻或机械研磨,通过从收缩的MCVD棒中除去MCVD起始管材料,从而消除了将MCVD起始管作为预制件工艺的一部分而固有的预制件尺寸的限制。 掺杂的外包管用于提供折射率分布的外部部分,从而最有效地利用MCVD生产的玻璃,并允许生产比之前可能的显着更大的MCVD预成型件。

    SYNTHETIC SILICA GLASS TUBE FOR THE PRODUCTION OF A PREFORM
    168.
    发明申请
    SYNTHETIC SILICA GLASS TUBE FOR THE PRODUCTION OF A PREFORM 审中-公开
    合成二氧化硅玻璃管用于生产预制物

    公开(公告)号:US20100260949A1

    公开(公告)日:2010-10-14

    申请号:US12820001

    申请日:2010-06-21

    Abstract: Known synthetic quartz glass tubes for the production of a preform have an inner bore with a surface layer produced without using tools in the molten state and an inner zone. The aim of the invention is to provide a tube which does not release any OH groups to the surroundings. For this purpose, the surface layer (30) has a thickness of 10 μm and an average OH content of not more than 5 ppm by weight and an average surface roughness Ra of not more than 0.1 μm. The inner zone (34) that starts on the surface layer (30) and terminates 10 μm before the outer wall has an average OH content of not more than 0.2 ppm by weight. A simple and inexpensive method for producing a quartz tube of the above type is to continuously draw a tube strand from a softened quartz glass mass in a vertical drawing process. A scavenging gas is circulated through the inner bore of the tube, said gas having a water content of less than 100 ppb per weight. The front end of the tube strand (19) is closed by a flow obstacle (26) that is permeable the scavenging gas and that reduces the amount of scavenging gas (23) flowing through.

    Abstract translation: 用于生产预成型件的已知的合成石英玻璃管具有内孔,其具有在不使用处于熔融状态的工具和内部区域的情况下制备的表面层。 本发明的目的是提供一种不会向周围释放任何OH基团的管。 为此,表面层(30)的厚度为10μm,平均OH含量为5重量ppm以下,平均表面粗糙度Ra为0.1μm以下。 在表层(30)上开始并在外壁之前终止10μm的内部区域(34)具有不大于0.2重量ppm的平均OH含量。 用于生产上述类型的石英管的简单和便宜的方法是在垂直拉伸过程中连续地从软化的石英玻璃块抽取管束。 清除气体通过管的内孔循环,所述气体的含水量小于100ppb /重量。 管股(19)的前端由能够吸收清除气体的流动障碍物(26)封闭,并减少流过的清除气体(23)的量。

Patent Agency Ranking