Abstract:
A method and position sensor assembly for determining a mutual position between a first object and a second object. The position sensor assembly includes a first body, a coil, a control unit, and a sensor circuit, the first body being reciprocally displaceable in the axial direction in relation to the coil. The sensor circuit includes in turn a comparator connected to a first branch including the coil, a power switch, and a measuring resistance coupled in series with each other.
Abstract:
An engine is provided with a variable valve timing device which transmits a rotational force generated by a motor via a motor drive circuit to a cam shaft so as to change a rotational phase of the cam shaft relative to a crank shaft. An ECU cools a motor and a motor drive circuit when the change of the rotational phase stops during the changing of the rotational phase of the cam shaft to a target value is detected. In addition, the lock state is eliminated by driving the motor by the motor drive circuit after cooling the motor device.
Abstract:
A modified rocker assembly having an offset end is designed to be used in engine heads having an obstruction that would not allow a switching rocker arm to be used. The modified rocker assembly is described having an obstructed side and a non-obstructed side. The rocker assembly has an outer structure with a first end, and an inner rocker structure fitting within the outer structure, the inner structure also having a first end. The modified rocker assembly has an axle pivotally connecting the first ends of inner structure to the outer structure, such that the inner structure may rotate within the outer structure around the axle. At least one torsion spring on one side of axle, rotationally biases the inner structure relative to the outer structure. The outer structure, on the obstructed side as it extends from the second end toward the first end, is offset toward the non-obstructed side creating the first offset portion to provide additional clearance on the obstructed side. This design allows the modified rocker arm to fit into an engine head having an obstruction on its obstruction side.
Abstract:
An engine is provided with a variable valve timing device which transmits a rotational force generated by a motor via a motor drive circuit to a cam shaft so as to change a rotational phase of the cam shaft relative to a crank shaft. An ECU cools a motor and a motor drive circuit when the change of the rotational phase stops during the changing of the rotational phase of the cam shaft to a target value is detected. In addition, the lock state is eliminated by driving the motor by the motor drive circuit after cooling the motor device.
Abstract:
A valve control system for an internal combustion engine includes a valve actuation system that actuates each of an intake valve and an exhaust valve between N open lift modes where N is an integer greater than one. A control module defines a switching window having a start time based on intake valve timing and an end time based on exhaust valve timing. The control module enables transitioning of at least one of the intake and exhaust valves between the N open lift modes based on the switching window.
Abstract:
A requested volume flow ratio calculated based on a requested torque, an amount of two times a spit-back gas amount at the valve overlap time calculated based on a requested residual gas rate, and a spit-back gas amount of the time when an intake valve is closed are added together, to set a requested valve passing gas amount of the intake valve, thereby determining a target operating characteristic of the intake valve based on the requested valve passing gas amount.
Abstract:
An intake air amount control system for an internal combustion engine, which controls respective amounts of intake air drawn into four cylinders #1 to #4, independently of each other, by variable inter-intake cam phase mechanisms 80, identifies intake air amount variation coefficients Φ#i, based on a model [equation (43)] defining a relationship between an estimated value Gth_est of a TH passing intake air amount and a plurality of simulation values Gcyl_OS#i, such that the estimated value Gth_est becomes equal to the TH passing intake air amount, calculates a target inter-intake cam phase θssi#i_cmd, on a cylinder-by-cylinder basis, according to the identified intake air amount variation coefficients Φ#i (step 81), and calculates control input DUTY_ssi#2 to #4 to the variable inter-intake cam phase mechanisms 80 according to the target inter-intake cam phases θssi#i_cmd (step 75).
Abstract translation:用于内燃机的进气量控制系统通过可变进气内凸轮相位机构80独立地控制吸入四个气缸#1至#4的进气的量,识别进气量变化系数 Phi#i基于限定通过进气量TH的估计值Gth_est与多个模拟值Gcyl_OS#i之间的关系的模型[等式(43)],使得估计值Gth_est变为等于TH 通过进气量,根据识别的进气量变化系数Phi#i,在逐个气缸的基础上计算目标进气内凸轮相位t i i scmd(步骤81),并计算控制输入DUTY_ssi#2 到#4到根据目标进气间凸轮相位的可变进气腔内凸轮相位机构80(步骤75)。
Abstract:
Variable valve control method and apparatus for an internal combustion engine provided with a variable valve mechanism that varies an operating characteristic of an intake valve, for controlling a gas amount passing back through the intake valve by variably controlling the operating characteristic. A storage section stores previously a correlation between a value equivalent to an opening area of the intake valve and a valve passing gas amount, corresponding to predetermined effective cylinder capacity. A conversion section converts that value equivalent into the valve passing gas amount by referring to the correlation. A correction section corrects the value equivalent based on a ratio between the converted valve passing gas amount and a requested valve passing gas amount. A calculating section calculates requested effective cylinder capacity (by which the requested valve passing gas amount can be obtained based on the value equivalent to the opening area) based on the valve passing gas amount obtained by referring to the correlation based on the corrected value equivalent to the opening area, and the requested valve passing gas amount. A control section controls the variable valve mechanism according to the requested effective cylinder capacity calculated.
Abstract:
A method of operating an internal combustion engine having an; electromagnetically driven intake valves for a vehicle. With the method, deviation of an opening operation of the electromagnetically driven intake valve in response to a command signal for opening the intake valve from a predetermined characteristic is detected, and at least one of parameters used for controlling operation of the internal combustion engine is corrected so as to reduce a change in an intake air charging state in which the internal combustion engine is charge with the intake air. A valve closing timing of the intake valve or a valve closing timing of the exhaust valve that cooperates with the intake valve may be used as parameters to be corrected.
Abstract:
A requested volume flow ratio calculated based on a requested torque, an amount of two times a spit-back gas amount at the valve overlap time calculated based on a requested residual gas rate, and a spit-back gas amount of the time when an intake valve is closed are added together, to set a requested valve passing gas amount of the intake valve, thereby determining a target operating characteristic of the intake valve based on the requested valve passing gas amount.