Abstract:
A wheeled personal transport device, for example, a wheelchair, includes a pressure vessel for providing a portable supply of medicinal gas for a user of the transport device. The pressure vessel is formed from a plurality of polymeric hollow chamber having either en ellipsoidal or spherical shape and interconnected by a plurality of relatively narrow conduit sections disposed between consecutive ones of the chambers. The pressure vessel includes a reinforcing filament wrapped around the interconnected chambers and interconnecting conduit sections to limit radial expansion of the chambers and conduit sections when filled with a fluid under pressure. The container system further includes a fluid transfer control system attached to the pressure vessel for controlling fluid flow into and out of the pressure vessel and a gas delivery mechanism for delivering gas from the pressure vessel to a user in a breathable manner.
Abstract:
A cryostat arrangement for keeping liquid helium comprising an outer shell (2), a helium container (6) installed therein and a neck pipe (4) extending from the helium container to the outer shell whose upper warm end is connected to the outer shell and whose lower cold end is connected to the helium container, wherein the outer shell, the helium container and the neck pipe define an evacuated space (13) containing a radiation shield (15) surrounding the helium container and being connected at a coupling to the neck pipe in a heat-conducting fashion, wherein a refrigerator is installed in the neck pipe having a cold finger (5a) which consists of at least one pipe and projects into the neck pipe, is characterized in that at least one pipe of the cold finger is surrounded by at least one separating body (3a) which divides the neck pipe into two partial volumes (8a and 9a) which are connected to one another through a lower opening (10a) and an upper opening (7a). A cryostat arrangement of this type with active cooling through refrigerators shows considerable improvements over conventional cryostats with respect to thermal properties. In particular, it is possible to completely stop consumption of liquid helium.
Abstract:
An improved cryogenic liquid storage tank features a main tank containing a ullage tank. The top portion of the main tank communicates with the bottom portion of the ullage tank through a pipe segment and an opening in the ullage tank. The pipe segment is dimensioned and positioned so that the main tank fills with incoming cryogenic liquid while the ullage tank remains primarily empty. The restricted flow into the ullage tank causes the flow of cryogen into the main tank to decrease when the main tank is nearly full. This decrease in flow is utilized to terminate the filling of the tank. Removal of product from the main tank decreases the pressure and the liquid level therein so that liquid flows out of the ullage tank and is unable to return.
Abstract:
A pressure vessel for holding a pressurized fluid such as compressed natural gas ("CNG") includes two end cells and zero or more interior cells. The cell geometry ensures that the cells meet one another at tangential circular surfaces, thereby reducing the tendency of adjacent cells to peel apart. A web secured about the cells includes two sheets that are tangent to the cells. Unused volumes between the cells and the web contain wedges of foam or rubber. A valve provides fluid communication between the interior of the pressure vessel and a pressurized fluid line. The filled weight of one pressure vessel does not exceed the filled weight of a conventional gasoline tank that occupies substantially the same space as the pressure vessel. The pressure vessel may be configured with exterior recesses for engaging conventional gasoline tank straps.
Abstract:
A tank for compressed natural gas utilizes internal tension members. The tank has an upper half and a lower half, each half being formed with at least two cylindrical portions separated by a Y-shaped junction. The sections of each half have engagement members in the interiors. The engagement members include a head and a socket which slide longitudinally together to secure the upper and lower halves against tension due to the gas pressure.
Abstract:
A compressed gas storage tank comprises a multi-layer sheet metal sandwich structure with a predetermined pattern of solid state diffusion bonds between all the neighburing layers. After the sheets have been solid state diffusion bonded together in the flat condition, the tank is blow formed between dies under superplastic forming conditions to produce at least one superplastically expanded core layer for containing the compressed gas. The configuration of the core layer is determined by the diffusion bond pattern. The expanded core layer provided internal bracing for the tank to give in rigidity and enable it to withstand the high internal pressures.
Abstract:
A dual gas pressure vessel is divided into a first chamber 22 and a second chamber 24 by collapsible bellows 16. As the gas in the first chamber is dishcarged through an exhaust 29 the bellows collapse until a plate 20 is pierced by a probe 32, following which the gas in the second chamber 24 is vented. A support 26 for the plate 20 ensures that, during charging of the vessel, the first and second chambers are well defined in volume.
Abstract:
The tank is a modified form of the lobed tank described in British Pat. No. 1522609, whereby the tank ends are of simpler constructional form. Thus, the tank comprises, top, bottom and two opposed side walls (1 to 4) each consisting of parallel, part-cylindrical lobes (11) which are connected and tied together by tie-plates (13, 14) and elongated armed insert elements (16, 17 and 17a). The invention is characterized in that each one of said other two opposed side walls (5, 6) comprises at least two part-lobes (11c) which present straight edges to which the common straight end edges of a series of two-way corner transition (12c) and part-transition (12d) pieces are joined, and in that the end of each part-lobe (11c) has a respective part-transition piece (12d) joined thereto to present a curved edge to which a part-spherical three-way corner (12b) can be joined to close-off the side wall (5 or 6). Preferably, the transition and part-transition pieces are joined together via elongate curved insert elements (12e) in which there is a smooth transition from being of generally "Y" cross-section at one end to "T" cross-section at the other end.
Abstract:
A hollow reinforced concrete sphere can be used as a container for transporting compressed gas, such as natural gas. Such containers can be interconnected and towed from one place to another by an ocean-going tugboat. Each container is formed with three band-like groups of reinforcing rings. Each group has its reinforcing rings disposed at right angles to the reinforcing rings in the other groups. The inner and outer surfaces of the container walls can be covered with a desired coating. In constructing the containers, they can be built at the water's edge and then rolled into the water.
Abstract:
A substantially rectilinear tank for the storage of cryogenic fluids or the like wherein corrugated baffle plates are oriented with respect to each other and to the sideplates of the tank to provide maximum support both for the pressures built up when the container is in use and the pressures exerted on the structure during fabricating processes.