Abstract:
A method for capturing hyperspectral images using a regular color camera. In the method, the camera takes multiple images of a scene, with the camera oriented differently for each image. For a camera carried by an aircraft or spacecraft, this allows hyperspectral imaging without the cost or weight of a hyperspectral camera.
Abstract:
A method for manufacturing an emitter comprises providing a semiconductor substrate having a main surface, the semiconductor substrate comprising a cavity adjacent to the main surface. A portion of the semiconductor substrate arranged between the cavity and the main surface of the semiconductor substrate forms a support structure. The method comprises arranging an emitting element at the support structure, the emitting element being configured to emit a thermal radiation of the emitter, wherein the cavity provides a reduction of a thermal coupling between the emitting element and the semiconductor substrate.
Abstract:
A light splitting module for obtaining spectrums of an object to be tested is disclosed, which sequentially includes a light entrance window, a diffuser and a filter array along a light entrance direction, wherein the filter array is an angle modulated filter array which has multiple subareas and includes multiple filters with different center wavelengths respectively corresponding to the subareas. Also, a dual-mode multiplexing optical device is disclosed, which includes the light splitting module, an illumination module and a light field imaging module, can realize the integration of spectral detection and light field imaging, so it can be applied to material spectral detection, digital image detection and digital focusing for obtaining high-resolution imaging results; and simultaneously, the modules of the device are detachable, so that users can use the device as required.
Abstract:
A metrology system includes an illumination source configured to generate an illumination beam, one or more illumination optics configured to direct the illumination beam to a sample, one or more collection optics configured to collect illumination emanating from the sample, a detector, and a hyperspectral imaging sub-system. The hyperspectral imaging sub-system includes a dispersive element positioned at a pupil plane of the set of collection optics configured to spectrally disperse the collected illumination, a lens array including an array of focusing elements, and one or more imaging optics. The one or more imaging optics combine the spectrally-dispersed collected illumination to form an image of the pupil plane on the lens array. The focusing elements of the lens array distribute the collected illumination on the detector in an arrayed pattern.
Abstract:
A method for capturing hyperspectral images using a regular color camera. In the method, the camera takes multiple images of a scene, with the camera oriented differently for each image. For a camera carried by an aircraft or spacecraft, this allows hyperspectral imaging without the cost or weight of a hyperspectral camera.
Abstract:
A method, apparatus and system estimating channel power, and monitoring a frequency spectrum characteristic. A method for estimating channel power includes extracting frequency spectrum information from a received signal, so as to obtain a frequency spectrum of the received signal, estimating power of a central channel in the frequency spectra according to a power value of a flat area of the central channel, and estimating power of a neighboring channel in the frequency spectra according to a power value of a flat area of the neighboring channel. With the embodiments of the present disclosure, the power of the central channel and the power of the neighboring channel may be estimated by using only frequency spectrum information obtained by a single optical receiver, so as to quantitatively evaluate influence of a power imbalance effect, thereby ensuring precision of the power estimation, and reducing effects of nonideal factors on the estimated values.
Abstract:
In some aspects, a device for apportioning granular samples includes a sample feeder defining a conduit, the conduit including a first opening to receive the granular samples and a second opening. The device includes a shuttle operably coupled to the sample feeder to receive the granular samples from the conduit via the second opening. The shuttle is configured to apportion the granular samples to incrementally enter a sample chamber to be analyzed. The device includes an outlet conduit fluidly coupled to the sample chamber and configured to permit the sample chamber to be evacuated.
Abstract:
An example system determines biomechanical properties of eye tissue. The system includes a confocal microscopy system configured to scan the incident light across a plurality of cross-sections of the tissue. The incident light is reflected by the plurality of cross-sections of tissue as scattered light. The system includes a spectrometer to receive the scattered light and provide spectral information for the scattered light. The system includes processor(s) to determine a Brillouin frequency shift from the spectral information and to generate a three-dimensional profile of the corneal tissue according to the Brillouin frequency shift. The three-dimensional profile provides an indicator of one or more biomechanical properties of the tissue. The spectrometer includes a multipass optical device that generates an interference pattern from the scattered light. The interference pattern provides the spectral information for the scattered light. The spectrometer includes a camera to detect the interference pattern from the optical device.
Abstract:
The invention relates to a device for generating temporally distant light pulses, said device comprising a first light source (51) generating a first sequence (I) of light pulses at a first repetition rate, and a second light source (52) generating a second sequence (II) of light pulses at a second repetition rate. It is the object of the present invention to provide an improved device for generating temporally distant light pulses. This object is inventively achieved by providing for at least one actuator element which influences the first and/or the second repetition rate, and a control element (61) which charges the actuator element with a periodical modulation signal (62) for periodical variation of the first and/or second repetition rate. A control circuit is provided for, comprising a phase detector (57), which derives a control signal (58) from the first light pulse sequence (I) and the second light pulse sequence (II), a corrective element (59, 60) which derives a control deviation signal (63) from the control signal (58) and the modulation signal (62), a control element (64), at the input of which the control deviation signal (63) is pending, and a superposition element (66) which forms an actuator signal (67) from the modulation signal (62) and the output signal (65) of the control element (64), and which charges the actuator element with the actuator signal (67). Moreover, the invention relates to a method for generating temporally distant light pulses.
Abstract:
A laser ablation tomography system includes a specimen stage for supporting a specimen. A specimen axis is defined such that a specimen disposed generally on the axis may be imaged. A laser system is operable to produce a laser sheet in a plane intersecting the specimen axis and generally perpendicular thereto. An imaging system is operable to image the area where the laser sheet intersects the specimen axis.