Abstract:
The present invention discloses a TMOS with a high extinction ratio based on slab PhCs which comprises an upper slab PhC and a lower slab PhC connected as a whole; the upper slab PhC is called as a first square-lattice slab PhC, wherein the unit cell of the first square-lattice slab PhC includes a high-refractive-index rotating-square pillar, three first flat dielectric pillars and a background dielectric, and the first flat dielectric pillars includes a high-refractive-index dielectric pipe and a low-refractive-index dielectric, or of 1 to 3 high-refractive-index flat films, or of a low-refractive-index dielectric; the lower slab PhC is a second square-lattice slab PhC with a complete bandgap, the unit cell of the second square-lattice slab PhC includes a high-refractive-index rotating-square pillar, three second flat dielectric pillars and a background dielectric is a low-refractive-index dielectric and an normalized operating frequency of the TMOS is 0.4057 to 0.406.
Abstract:
An optical modulator for switching an optical signal of wavelength λ from one waveguide-electrode to another requires that both waveguide-electrodes be made of an electrically conducting material. Also, a non-conducting cross-coupling material fills a slot along a length L between the waveguide-electrodes. Importantly, cross-coupling material in the slot provides a separation distance xc between the waveguide-electrodes that is less than 0.35 microns. When a switching voltage Vπ is selectively applied to the waveguide-electrodes, a strong uniform electric field E is created within the cross-coupling material. Thus, E modulates the cross-coupling length of the optical signal by an increment ±Δ each time it passes back and forth through the cross-coupling material along the length L. Thus, after an N number of cross-coupling length cycles along the length L, when NΔ equals one cross-coupling length, the optical signal is switched from one waveguide-electrode to the other.
Abstract:
A substantially planar waveguide for dynamically controlling the out-of-plane angle at which a light beam exits the waveguide. Generally, liquid crystal materials may be disposed within a waveguide in a cladding proximate or adjacent to a core layer of the waveguide. In one example, the waveguide may contain one or more taper regions such that the light beam exits the waveguide and propagates out-of-the-plane of the waveguide into an out-coupling medium at a propagation angle. In one example, the waveguide may contain one or more electrodes onto which one or more voltages may be applied. The magnitude of the propagation angle may be electronically controlled by altered by controlling or altering the magnitude of the one or more applied voltages.
Abstract:
The present invention is based on a two-dimensional photonic crystal where are inserted defects that originate two waveguides and one resonant cavity. An electromagnetic signal that crosses the device is confined in the interior of the defects, due to the photonic band gap associated with the periodic structure that surrounds it. Its main function is the control of the flux of an electromagnetic signal over a communication channel, blocking (state off) or allowing (state on) the passage of the signal. It also promotes the change in the propagation direction of an electromagnetic signal by an angle of 120 degrees, providing greater flexibility in the design of integrated optical systems. The working principle of the device is based on the excitation of dipole modes in its resonant cavity, accordingly to the application of an external DC magnetic field on the magneto-optical material that constitutes it. In states on and off the magneto-optical material is magnetized and nonmagnetized, respectively.
Abstract:
There is presented an optical apparatus comprising first and second photon pair sources configured to convert at least one pump light photon into a first and second correlated signal and idler photon pairs. In one example, the apparatus is configured to use one of the signal and idler photons from the first correlated photon pair for controlling the conversion of the pump light photon in the second photon pair source. The apparatus may configured such that, at least one of the signal and idler photons from the first correlated photon pair is output from the first photon pair source onto an optical path wherein at least one of the signal and idler photons from the second correlated photon pair is output from the second photon pair source onto the optical path. A method is also provided for outputting one or more photons using the optical apparatus.
Abstract:
A semiconductor optical waveguide device includes a substrate having a first area and a second area, and first, second, and semiconductor mesas on the substrate. The first semiconductor mesa includes a cladding layer and a first mesa portion on the second area, the first mesa portion including first and second portions. The second semiconductor mesa includes an intermediate layer, a first core layer, and first and second mesa portions on the first and second areas, respectively. The third semiconductor mesa includes a second core layer, and first and second mesa portions having a greater width than that of the second semiconductor mesa. The first portion of the first semiconductor mesa has a substantially same width as the second mesa portion of the second semiconductor mesa. The first core layer is optically coupled to the second core layer through the intermediate layer disposed between the first and second core layers.
Abstract:
An optical switch includes a substrate, a ring resonator formed on the substrate, a first waveguide formed on the substrate in optical coupling with the ring resonator, the first waveguide being configured to guide a WDM signal, an optical detector configured to detect an optical signal component in said ring resonator, a temperature regulator driven in response to an output signal of the optical detector, the temperature regulator being configured to change a temperature of the ring resonator, the ring resonator having a resonant wavelength corresponding to a wavelength of an optical signal component that constitutes the WDM signal, the ring resonator, the optical detector and the temperature regulator constituting together a feedback control system that locks the resonant wavelength of the ring resonator to the wavelength of the optical signal component in the WDM signal.
Abstract:
Systems and methods are presented for modulating a beam of radiation, such that the modulated beam exhibits substantially null residual amplitude modulation (RAM). An electro-optical modulator is presented that includes a waveguide, a first region associated with the waveguide and a second region associated with the waveguide. The waveguide is designed to guide a beam of radiation. A first electric potential applied to the first region causes a first modulation to the beam of radiation while a second electric potential applied to the second region causes a second modulation to the beam of radiation. The first modulation combined with the second modulation provides substantially null residual amplitude modulation of the beam of radiation.
Abstract:
Disclosed is an optical delay element that makes use of a line-defect waveguide of a photonic crystal, in which long optical delay time and small group speed dispersion are rendered compatible with each other and in which waveform distortion that might otherwise be produced in processing an ultra-high speed signal is eliminated. Two line-defect waveguides 5 and 11, having different pillar diameters and group velocity dispersions of opposite signs, are interconnected by a line-defect waveguide 8, the pillar diameters of which are gradually varied from one 5 of the line-defect waveguides to the other line-defect waveguide 11, such as to compensate for group speed dispersion as well as to maintain an optical delay effect.
Abstract:
An optical switch includes a substrate, a ring resonator formed on the substrate, a first waveguide formed on the substrate in optical coupling with the ring resonator, the first waveguide being configured to guide a WDM signal, an optical detector configured to detect an optical signal component in said ring resonator, a temperature regulator driven in response to an output signal of the optical detector, the temperature regulator being configured to change a temperature of the ring resonator, the ring resonator having a resonant wavelength corresponding to a wavelength of an optical signal component that constitutes the WDM signal, the ring resonator, the optical detector and the temperature regulator constituting together a feedback control system that locks the resonant wavelength of the ring resonator to the wavelength of the optical signal component in the WDM signal.