Abstract:
A capacitive microphone and method of fabricating the same are provided. One or more holes can be formed in a first printed circuit board (PCB). A diaphragm can be surface micro-machined onto an interior surface of the first PCB at a region having the one or more holes. Interface electronics can also be interconnected to the interior surface of the PCB. One or more spacer PCBs can be attached to a second PCB to the first PCB, such that appropriate interconnections between interconnect vias are made. The second PCB and first PCB with spacers in between can be attached so as to create a cavity in which the diaphragm and interface electronics are located.
Abstract:
A plumbing fixture includes a basin, a plumbing system configured to supply water to the basin, a processing circuit having a digital media interface, and a housing containing the plumbing system and the processing circuit. The housing includes a rear face having a section extending therefrom. The section extending from the housing includes a first face parallel to the rear face and a second face connecting the first face to the rear face. The second face includes ports allowing access to the digital media interface.
Abstract:
A speaker box is disclosed. The speaker box includes a housing and a speaker unit. The housing includes a bottom, a side connected with the bottom, and a rear volume formed by the side and the bottom, the side including a first side and a second side connecting with the first side. The speaker unit includes a frame, a magnetic circuit unit accommodated in the frame, a vibration unit positioned above the magnetic circuit unit and fixed to the frame, and a front volume. The frame includes a first sidewall abutting against the first side, and a second sidewall connecting with the first sidewall. The first side includes a first mounting portion, the first sidewall includes a second mounting portion engaging with the first mounting portion.
Abstract:
A plumbing fixture includes a basin, a plumbing system configured to supply water to the basin, a processing circuit, and a housing containing the plumbing system and the processing circuit. The housing includes ports on the second face allowing access to a digital audio input, the plumbing fixture configured to output audio via a speaker based on the digital audio input. The plumbing fixture further includes a remote control configured to control the plumbing fixture and further configured to customize selectable audio sources for playback via the speaker.
Abstract:
A protective enclosure for an electronic device such as a laptop computer or tablet computer that comprises a shell that is capable of enclosing and substantially surrounding the electronic device. The shell is substantially watertight, substantially rigid and substantially crush-resistant. The inside of the shell has a hook and loop liner with shock absorbing corner bumpers having hook and loop type bases so that the bumpers may attach at any point on the liner inside the shell to accommodate electronic devices of various sizes and to secure the device inside the enclosure in a shock absorbent suspended manner. The shell may further comprise a USB connector hub for connection to the USB port of a laptop computer or PC tablet enclosed in the protective shell.
Abstract:
A protective cover for an electronic device that has an interactive control panel and one or more electrical contacts includes a protective shell having first member and a second member. The second member is configured to join with the first case member to at least partially cover the electronic device. An aperture defined by the protective shell is aligned with the interactive control panel when the electronic device is at least partially enclosed by the protective shell. A securing mechanism secures the first member with the second member. An electrical connection attached to the protective shell is configured to connect an electrical source to at least one of the electrical contacts of the electronic device to provide an electrical connection to the electrical source when the electronic device is received by the first member.
Abstract:
The present invention relates to a silicon based MEMS microphone, comprising a silicon substrate and an acoustic sensing part supported on the silicon substrate, wherein a mesh-structured back hole is formed in the substrate and aligned with the acoustic sensing part, the mesh-structured back hole includes a plurality of mesh beams which are interconnected with each other and supported on the side wall of the mesh-structure back hole, the plurality of mesh beams and the side wall define a plurality of mesh holes which all have a tapered profile and merge into one hole in the vicinity of the acoustic sensing part at the top side of the silicon substrate. The mesh-structured back hole can help to streamline the air pressure pulse caused, for example, in a drop test and thus reduce the impact on the acoustic sensing part of the microphone, and also serve as a protection filter to prevent alien substances such as particles entering the microphone.
Abstract:
A protective cover for an electronic device that has an interactive control panel and one or more electrical contacts includes a protective shell having a first member and a second member. The first member has a first coil arranged to convey electromagnetic energy with respect to a second, external coil. The second member is configured to join with the first case member to at least partially cover the electronic device. An aperture defined by the protective shell is aligned with the interactive control panel when the electronic device is at least partially enclosed by the protective shell. An electrical connection attached to the protective shell is configured to directly or indirectly convey electrical power received at the first coil to at least one of the electrical contacts of the electronic device to provide an electrical connection to the electrical source when the electronic device is received by the first member.
Abstract:
A microphone rubber apparatus mounted on an SMD microphone prepared on a printed circuit board to protect the SMD microphone from an external physical impact and the like in a portable communication device such as a portable terminal and a Personal Digital Assistant (PDA). The microphone rubber apparatus includes a microphone holder portion formed to engage with and wrap up a microphone, a connection portion protruding to one side of the microphone holder portion and delivering a transmission sound to the microphone through an inside thereof, and at least one shock absorbing portion deformably formed around the connection portion to ease an impact caused by an external force. Thus, the shock absorbing portion having a wrinkled shape can be deformed no matter in which direction an impact is applied to the portable communication device, thereby easing the impact and preventing the microphone rubber from being detached from the microphone due to the external impact or during a distribution test.
Abstract:
A protective enclosure for an electronic device such as a laptop computer or tablet computer that comprises a shell that is capable of enclosing and substantially surrounding the electronic device. The shell is substantially watertight, substantially rigid and substantially crush-resistant. The inside of the shell has a hook and loop liner with shock absorbing corner bumpers having hook and loop type bases so that the bumpers may attach at any point on the liner inside the shell to accommodate electronic devices of various sizes and to secure the device inside the enclosure in a shock absorbent suspended manner. The shell may further comprise a USB connector hub for connection to the USB port of a laptop computer or PC tablet enclosed in the protective shell.