Abstract:
Methods and apparatus are disclosed for detecting one or more species in a sample, wherein laser probe light is frequency swept across at least one infra red absorption spectrum feature of each of the species. A path from the probe light source to a single detector element may be switched between at least one sample absorption cell or volume and one or more reference cells or volumes.
Abstract:
A spectroscopic system may include: a probe having a probe tip and an optical coupler, the optical coupler including an emitting fiber group and first and second receiving fiber groups, each fiber group having a first end and a second end, wherein the first ends of the fiber groups are formed into a bundle and optically exposed through the probe tip; a light source optically coupled to the second end of the emitting fiber group, the light source emitting light in at least a first waveband and a second waveband, the second waveband being different from the first waveband; a first spectrometer optically coupled to the second end of the first receiving fiber group and configured to process light in the first waveband; and a second spectrometer optically coupled to the second end of the second receiving fiber group and configured to process light in the second waveband.
Abstract:
Diffuse reflectance spectroscopy apparatus for use in analyzing a sample comprising a sample receiving location 2 for receiving a sample 3 for analysis; an illumination arrangement 4 for directing light towards a received sample; a detector 6 for detecting light reflected by a received sample; and collection optics 5 for directing light reflected by a received sample towards the detector. The illumination arrangement further comprises an interferometer 42 and a half beam block 45a, 45b which is disposed substantially at a focus in the optical path for blocking light which exits the interferometer, passes said focus, and is reflected from re-entering the interferometer. A half beam block 45a may be disposed in the optical path between the interferometer and the light source 41 for blocking light that exits the interferometer back towards the light source and is reflected by the light source from re-entering the interferometer and/or a half beam block 45b may be disposed in the optical path on the opposite side of the interferometer than the light source.
Abstract:
Diffuse reflectance spectroscopy apparatus for use in analysing a sample comprising a sample receiving location 2 for receiving a sample 3 for analysis; an illumination arrangement 4 for directing light towards a received sample; a detector 6 for detecting light reflected by a received sample; and collection optics 5 for directing light reflected by a received sample towards the detector. The illumination arrangement further comprises an interferometer 42 and a half beam block 45a, 45b which is disposed substantially at a focus in the optical path for blocking light which exits the interferometer, passes said focus, and is reflected from re-entering the interferometer. A half beam block 45a may be disposed in the optical path between the interferometer and the light source 41 for blocking light that exits the interferometer back towards the light source and is reflected by the light source from re-entering the interferometer and/or a half beam block 45b may be disposed in the optical path on the opposite side of the interferometer than the light source.
Abstract:
The present invention generally pertains to a system, method and kit for the detection and measurement of spectroscopic properties of light from a sample, or the scalable detection and measurement of spectroscopic properties of light from each sample present among multiple samples, simultaneously, wherein the system comprises: an optical train comprising a dispersing element; and an image sensor. The light detected and measured may comprise light scattered from a sample, emitted as chemiluminescence by a chemical process within a sample, selectively absorbed by a sample, or emitted as fluorescence from a sample following excitation.
Abstract:
The invention relates to a measurement apparatus for the determination of gas concentrations. The apparatus comprises two spectral channels, wherein the channels are separated by a single chopper wheel. The chopper wheel has several functions. On the transmitting side, it brings the light of the two light sources on the same measuring path, on the receiving side it associates the light to the associated receiver; it has its chopper function to use the lock-in technique; and it opens the possibility to implement an easy zero point correction.
Abstract:
A multispectral staring array comprises, amongst other things, at least two sensors where each sensor is adapted to detect an image in a different predetermined spectral sensitivity; a first lens to focus capture spectral bands; a spectral filter between the lens and the sensors to subdivide the incident spectral bands; and a second lens to direct and focus the subdivided incident spectral bands on each of the sensors.
Abstract:
A system and method of reducing turbulence sensitivity in a laser spot detector. Embodiments may include using beam splitters, reflectors, and beam deviators. The reflectors may be trihedral reflectors and the beam deviators may be segmented wedge plates having predetermined physical angles and angle directions in each wedge segment designed to produce opposing blurs for each segment of the aperture. A predetermined blur introduced into each line of sight eliminates the need for de-focus, thereby mitigating effects such as centroid shift caused by turbulence or dirty/damaged sensor apertures.
Abstract:
The invention is a method and apparatus for determining characteristics of a sample. The system and method provide for detecting a monitor beam reflected off a mirror, where the monitor beam corresponds to the intensity of light incident upon the sample. The system and method also provide for detecting a measurement beam, where the measurement beam has been reflected off the sample being characterized. Both the monitor beam and the measurement beam are transmitted through the same transmission path, and detected by the same detector. Thus, potential sources of variations between the monitor beam and the measurement beam which are not due to the characteristics of the sample are minimized. Reflectivity information for the sample can be determined by comparing data corresponding to the measurement beam relative to data corresponding the monitor beam.
Abstract:
A system and method are provided for detecting one or more substances. An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. The first wavelength band and second wavelength band are unique. Further, spectral absorption of a substance of interest is different at the first wavelength band as compared to the second wavelength band. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.