Abstract:
This invention is a process for the regeneration of solid acidic hydrocarbon conversion catalysts, but particularly certain transition aluminas and zeolites promoted with Lewis acids (preferably BF3) which have been used in the alkylation of isoparaffins with olefins. The process involves the removal of some portion of the reaction product residue adhering to the solid catalyst by contact with a solvent to partially recover the catalyst's initial activity.
Abstract:
Tischtschenko condensation of aldehydes is used to remove aldehydes from dry ketone-containing streams. The Tischtschenko condensation is used to condense the aldehydes into esters whose boiling points are significantly different than the ketones, greatly simplifying the separation of the esters from the ketones. An organic extraction step is used to obtain a substantially dry ketone containing stream. One particularly preferred class of extraction solvents is selected from the group consisting of butane, pentane, hexane, heptane, octane, nonane, decane and mixtures thereof. In particularly preferred embodiments, the Tischtschenko reaction is used in the context of aqueous-phase catalyzed olefin oxidation to ketones. The aldehyde to ester condensation permits easy and efficient removal of the aldehyde analogs of the desired ketones.
Abstract:
PCT No. PCT/US91/01508 Sec. 371 Date Sep. 4, 1992 Sec. 102(e) Date May 24, 1991 PCT Filed Mar. 5, 1991 PCT Pub. No. WO91/13851 PCT Pub. Date Sep. 19, 1991.The present invention provides aqueous catalyst solutions useful for oxidation of olefins to carbonyl products, comprising a palladium catalyst, a polyoxoacid or polyoxoanion oxidant comprising vanadium, and chloride ions. It also provides processes for oxidation of olefins to carbonyl products, comprising contacting olefin with the aqueous catalyst solutions of the present invention. It also provides processes for oxidation of olefins to carbonyl products by dioxygen, comprising contacting olefin with the aqueous catalyst solutions of the present invention, and further comprising contacting dioxygen with the aqueous catalyst solutions. The present invention also provides a process for the oxidation of palladium(0) to palladium(II) comprising contacting the palladium(0) with an aqueous solution comprising chloride ions and a polyoxoacid or polyoxoanion oxidant comprising vanadium.
Abstract:
PCT No. PCT/US91/01508 Sec. 371 Date Sep. 4, 1992 Sec. 102(e) Date May 24, 1991 PCT Filed Mar. 5, 1991 PCT Pub. No. WO91/13851 PCT Pub. Date Sep. 19, 1991.The present invention provides aqueous catalyst solutions useful for oxidation of olefins to carbonyl products, comprising a palladium catalyst, a polyoxoacid or polyoxoanion oxidant comprising vanadium, and chloride ions. It also provides processes for oxidation of olefins to carbonyl products, comprising contacting olefin with the aqueous catalyst solutions of the present invention. It also provides processes for oxidation of olefins to carbonyl products by dioxygen, comprising contacting olefin with the aqueous catalyst solutions of the present invention, and further comprising contacting dioxygen with the aqueous catalyst solutions. The present invention also provides a process for the oxidation of palladium(0) to palladium(II) comprising contacting the palladium(0) with an aqueous solution comprising chloride ions and a polyoxoacid or polyoxoanion oxidant comprising vanadium.
Abstract:
2077550 9113681 PCTABS00007 The present invention provides a process for the preparation of acidic aqueous solutions consisting essentially of phosphomolybdovanadate salts. Certain processes of the present invention dissolve in water an oxide, oxoacid, or mixtures thereof, and at least one oxoanion salt of phosphorus, molybdenum, and vanadium, wherein the sum of salt cationic charges does not exceed the sum of the phosphomolybdovanadate anionic charges in the solution. Other processes of the present invention dissolve in water a) an oxide, oxoacid, oxoanion salt, or mixtures thereof of phosphorus, molybdenum, and vanadium and b) a carbonate salt, bicarbonate salt, hydroxide salt or mixtures thereof, wherein the sum of salt cationic charges does not exceed the sum of the phosphomolybdovanadate anionic charges in the solution. The present invention also provides processes for the preparation of solid phosphomolybdovanadate salts by evaporating the so produced aqueous solutions to recover essentially all the dissolved phosphomolybdovanadate salt in solid form.
Abstract:
2077549 9113852 PCTABS00007 This invention is to the production of methyl ethyl ketone (MEK) from mixed normal butenes using polyoxoanion oxidants in an aqueous solution, catalyzed by palladium and preferably containing minor amounts of dissolved chloride ion. An intermediate MEK stream is hydrogenated to remove trace amounts of butyraldehyde from the product MEK stream.
Abstract:
The selective isopropylation of a naphthyl compound to diisopropylnaphthalene enhanced in the 2,6-diisopropylnaphthalene isomer is obtained in the presence of an acidic crystalline molecular sieve catalyst having twelve membered oxygen rings. The catalyst pore aperture dimension ranges from 5.5 ANGSTROM to 7.0 ANGSTROM . The use of these shape selective catalysts results in a diisopropylnaphthalene stream which is enhanced in beta isomers and enhanced in the desired 2,6-diisopropylnaphthalene isomer. A particularly preferred catalyst is synthetic Mordenite. Specific catalyst modifications are also described to improve selectivity to the desired 2,6-diisopropylnaphthalene isomer.
Abstract:
The invention relates to an electrically heated catalyst (EHC, 10) and a start-up method of a gas turbine engine employing an EHC (10) in the combustor (33). The catalyst (10) is electrically heated to a predetermined temperature prior to start up of the turbine system and is turned off when any one of several conditions are met, e.g. the heat of catalytic reaction is sufficient to maintain the catalyst (10) in its steady state condition. The EHC (10) is made of stacked or spirally wound foils (12, 14).