Abstract:
Eine unter einer mikromechanischen Schicht (2) vorgesehene Opferschicht wird zu Restanteilen isotrop rückgeätzt, so dass auf der Oberseite eines Trägers (1) in einem Zwischenraum (3) Abstandshalter (4) ausgebildet werden, die eine sich in Richtung auf die mikromechanische Schicht verjüngende Form aufweisen. Auf diese Weise wird nach dem Freiätzen der mikromechanischen Schicht ein Anhaften der mikromechanischen Schicht auf der Oberseite des Trägers verhindert.
Abstract:
The invention relates to a process of forming a rough interface (12) in a semiconductor substrate (2), comprising: the formation, on a surface (4) of said substrate, of a zone of irregularities (8) in or on an oxide or a material (6) that may be oxidized, the formation of roughnesses in or on the semiconductor substrate (2) by thermal oxidation of or through this material or this oxide (6) and a part of the semiconductor substrate.
Abstract in simplified Chinese:本发明揭示在一微机电设备之一或多个表面上形成一保护膜之方法,其包含下列步骤:形成一牺牲材料与一保护材料之一复合层;及选择性蚀刻该牺牲材料以形成一保护膜。本发明之保护膜较佳地改良并有该等保护膜之微机电设备的性能之一或多项态样。亦揭示借由本发明之方法形成之微机电设备及并有此等设备之视觉显示设备。
Abstract:
A method of forming a semiconductor device, according to an embodiment of the present invention, comprises a step of forming a sacrificial layer over a first surface of a workpiece having the first surface and an opposite second surface. A membrane is formed over the sacrificial layer. A through hole passing through the workpiece is etched from the second surface to expose the surface of the sacrificial layer. At least one portion of the sacrificial layer is removed from the second surface to form a cavity under the membrane. The cavity is aligned with the membrane.
Abstract:
A micro structure, a semiconductor device and a method for manufacturing the micro structure are provided to prevent the generation of failures in operation and to enhance the endurance. A micro structure includes a first structure layer(102) and a second structure layer(104). A gap is formed at a predetermined portion between the first and the second structure layers. The first and the second structure layers are arranged opposite to each other. The second structure layer is partially is fixed to the first structure layer. At least one sides of the first and the second structure layers are capable of being displaced. The opposite surfaces of the first and the second structure layers have different roughnesses. One side of the first structure layer or the second structure layer is made of a crystalline silicon layer.
Abstract in simplified Chinese:本发明提供用于借由减小可发生紧密接触之两个表面之间的表面积而降低一MEMS设备中之静摩擦力之一机制。接触表面积之降低系借由增加该等表面中之一者或两者之表面粗糙度而达成。该增加之粗糙度系借由在形成该MEMS设备中所使用之一牺牲层上形成一微遮罩层且然后蚀刻该牺牲层之表面而提供。该微遮罩层可使用奈米簇(520)来形成。当该MEMS设备之一下一部分形成于该牺牲层(810)上时,此部分将呈现借由蚀刻进程赋予于该牺牲层上之粗糙度特性。较粗糙表面(910)减小该MEMS设备中可用于接触之该表面积且继而减小透过其可赋予静摩擦力之面积。
Abstract in simplified Chinese:在某些实施例中系提供一种设备,其包括:一基板;及复数个支撑件,其在该基板之上。该设备可进一步包括一机械层,该机械层具有一可移动部分及一固定部分。该固定部分可安置于该等支撑件之上。在某些实施例中,该设备进一步包括一定位于该基板之上且机械地耦接至该可移动部分的反射性表面。某些实施例之该设备进一步包括至少一可移动停止组件,该至少一可移动停止组件自该可移动部分移位且机械地耦接至该可移动部分。在某些实施例中,该停止组件之至少一部分可定位于该固定部分之上。