Abstract:
In an internal combustion engine, which is provided with a variable valve mechanism that varies an open/close characteristic of an intake valve, a target open/close characteristic of the intake valve is determined. Simultaneously, a control speed at a time when the intake valve is controlled to have the target open/close characteristic is determined. As a result, the variable valve mechanism is controlled according to the target open/close characteristic and the control speed.
Abstract:
In an internal combustion engine provided with a variable valve mechanism that varies an open/close characteristic of an intake valve, a target open/close characteristic of the intake valve is determined and at the same time, a control speed of when the intake valve is controlled to have the target open/close characteristic is determined, so that the variable valve mechanism is controlled according to the target open/close characteristic and the control speed.
Abstract:
A system and method for controlling an internal combustion engine provide valve actuation that selectively couples an energy storage device to a launching coil to recover energy stored in the magnetic field and valve spring of the launching coil, decouples the energy storage device during a valve opening or closing event to control energy supplied to the catching coil, and couples the energy storage device to the catching coil to transfer energy from the storage device to the catching coil to provide a repeatable soft landing. A nonlinear feedback controller incorporates a feedforward system with an observer to control the rate of energy into the magnetic field of the catching coil while compensating for system losses and work to overcome gas forces within the combustion chamber. Feedback linearization techniques improve stability of the control system.
Abstract:
A decompression device for an engine reduces pressure in the engine's combustion chamber thereby reducing the amount of force required to start the engine. The decompression device incorporates a decompression lever that cooperates with a cam surface to hold engine valves open longer than normal while the engine is being started. The decompression lever has a weight section and a lifter section. The lifter section is located near a pivot location on the decompression lever and is generally the same thickness as the weight section. The lifter section protrudes beyond the cam gear to hold the engine valves open longer while starting the engine. After the engine has started, the decompression lever rotates into a retracted position to allow the engine valves to open and close normally.
Abstract:
A method of operating an internal combustion engine having an; electromagnetically driven intake valves for a vehicle. With the method, deviation of an opening operation of the electromagnetically driven intake valve in response to a command signal for opening the intake valve from a predetermined characteristic is detected, and at least one of parameters used for controlling operation of the internal combustion engine is corrected so as to reduce a change in an intake air charging state in which the internal combustion engine is charge with the intake air. A valve closing timing of the intake valve or a valve closing timing of the exhaust valve that cooperates with the intake valve may be used as parameters to be corrected.
Abstract:
In a hydraulic pressure control system for an engine cylinder cutoff device through which a first group of cylinders are cut off with at least intake valves of engine valves included in the first group kept inactive, while a second group of cylinders are working, the system includes a valve mode switching mechanism being responsive to supply oil pressure for switching an operating mode of at least an intake valve of engine valves of each of the first group of engine cylinders from active to inactive. Also provided is a hydraulic pressure control valve regulating the supply oil pressure. A control unit incorporated in the system sets the supply oil pressure to a predetermined maximum pressure when initiating the inactive mode, and holds the supply oil pressure at a predetermined oil pressure lower than the predetermined maximum pressure before the inactive mode is released.
Abstract:
A method for controlling electromagnetic actuators for operating induction and exhaust valves in internal combustion engines where one actuator, connected to a control unit, is coupled to a respective valve having a real position and includes a movable element magnetically driven by means of a resultant force to control the movement of the said valve between a closure position and a fully open position; the control unit is further connected to a piloting unit and includes a supervision block, an open loop control block, a closed loop control block and a selector block commanded by a switching signal generated by the supervision block. The method includes the steps of: operating in an open loop control mode of the real position; operating in a closed loop control mode of the real position; and alternatively selecting the open loop control mode and the closed loop control mode.
Abstract:
The invention relates to a control method for the electrical actuator of a variable valve train, the actuator being embodied in the form of a worm gear in which a sensor detects a position value (measured position value) of an eccentric shaft, a control difference is generated in a feedback branch with the use of the measured position value, and the electrical actuator is actuated. To suppress interferences in the control system, an observer value is formed that is associated with the position value from the pulse duty factor of the pulse-width modulation. The observer value is composed to a comparison value formed from the measured position value. The detected measured position value is not accepted if the deviation of the observer value from the comparison value exceeds a defined limit.
Abstract:
In order to control an actuator, the following steps are executed in the order indicated when an armature plate is to be moved from contact with a contact surface to contact with a contact surface on an electromagnet. A predefined amount of electrical energy is supplied to the coil. The coil is controlled into a freewheeling operating state until a first condition is satisfied. A predefined second amount of electrical energy is supplied to the coil before the armature plate is resting on the contact surface of the electromagnet. The coil controlled into a freewheeling operating state until a second condition is satisfied, whose satisfaction is an indication that the armature plate (116) is resting on the contact surface of the electromagnet.
Abstract:
Under a partial load, a pumping loss is reduced by a stratified combustion to enhance a fuel consumption, and during the maximum output operation, the output is increased by a premixture combustion, and the output of an engine is controlled, thereby enhancing the drivability. Under the partial load, an ignition source is provided in the vicinity of a fuel injection valve, and after the fuel is injected, the mixture is ignited, and a resulting flame is caused by a spray of the fuel to spread into a cylinder, thereby effecting a stratified combustion. When the load increases, so that soot and so on are produced in the stratified combustion, the fuel injection is effected a plurality of times in a divided manner, and a premixture is produced within the cylinder by the front-half injection, and a flame, produced by the latter-half injection, is injected into the cylinder to burn this premixture.