Abstract:
A spectral-domain optical coherence tomography system using a cross-dispersed spectrometer is disclosed. The interfered optical signal is dispersed by a grating into several orders of diffraction, and these orders of diffraction are separated by an additional dispersive optical element. The spectral interferogram is recorded by a set of linear detector arrays, or by a two-dimensional detector array.
Abstract:
Spectroscopy apparatus for spectrochemical analysis of a sample having an excitation source (60) for providing spectral light (62) of the sample for analysis. The spectral light (62) is analysed via an optical system (64-66-68) that includes a polychromator (70, 74-80) and solid state multielement array detector (82). The elements (i.e. pixels) of the detector (82) are serially read by means (84) to provide light intensity measurements as a function of wavelength. A problem is that the elements (pixels) of the detector (82) continue to accumulate charge during the serial read-out. This is avoided by providing an optical shutter (72) for blocking the spectral light (62) whilst elements (pixels) of the detector (82) are being serially read. Shutter (72) has a piezoelectric actuator which is preferably a bimorph mounted as a cantilever. It is preferably located adjacent to the entrance aperture (70) of the polychromator. Bimorph structures for the actuator and drive and protective circuit arrangements are also disclosed.
Abstract:
A simple, reliable, easy to use method for calculating bandwidth data of very narrow band laser beams based on bandwidth data obtained with a spectrometer in circumstances where the laser bandwidths are not large compared to the slit function of the spectrometer. The slit function of the spectrometer is determined (20). Spectral data of the laser beam is measured with the spectrometer to produce a measured laser beam spectrum which represents a convolution of the laser beam spectrum and the spectrometer slit function (76). This measured laser spectrum is then mathematically convolved with the slit function of the spectrometer to produce a doubly convolved spectrum. Bandwidth values representing true laser bandwidths are determined from measured laser spectrum and the doubly convolved spectrum. Preferably the true laser bandwidths are calculated by determining the difference between 'twice a measured laser bandwidth' and a corresponding 'doubly convolved bandwidth.' This method provides an excellent estimate of the true laser bandwidth because 'twice the measured laser bandwidth' represents two laser bandwidths and two spectrometer slit function bandwidths and the 'doubly convolved bandwidth' represents one laser bandwidth and two spectrometer slit function bandwidths. Thus, the difference is a representation of the true laser bandwidth. In a preferred embodiment the bandwidth parameters measured are the full width half-maximum bandwidth and the 95% integral bandwidth.
Abstract:
A monochromator (14) with a prism (20) is disposed so that light passes through it before passing on to an echelle polychromator (50). The linear dispersion of the monochromator (14) can be changed by changing the angular dispersion of the prism (20). This makes it possible to investigate, at high resolution, using an echelle grating (54), a particular spectral position and the region close to it. Care is taken that, depending on the mean wavelength being observed, not only is the detector array (66) of the polychromator (50) completely used, but also interfering orders are kept away from the polychromator (50). The linear dispersion of the monchromator can be changed for this purpose.
Abstract:
An optical device for the spectral analysis of a light source comprises
a) a spectrograph assembly (1,2,31,32) including a dispersive element (32), and b) a classical collimator (3), the device being characterised in that the spectrograph assembly (1,2,31,32) supplies a complete intermediate spectrum at the object focus of the classical collimator and the classical collimator (3) reforms, at its image focus, an image of the dispersive element (32). The spectrograph assembly (1,2,31,32) is preferably a Czerny-Turner or other type of spectrograph comprising an entry slit (31), two juxtaposed concave mirrors (1,2) of the same focal length and a dispersive element (32) placed strictly in the common focal plane of the two mirrors (1,2). Most preferably, the classical collimator (3) is the first mirror of a second, similar spectrograph assembly (3,4,34). The device is most advantageous in that it is readily useable for both simultaneous and sequential spectroscopy.
Abstract:
A novel solid state array detector is useful in an optical spectrometer of the type that includes a crossed dispersion system receptive of radiation for producing a pair of two dimensional displays of spectral lines characteristic of at least one atomic element. One display is ultraviolet and the other is visible. A solid-state chip has on the front surface a two dimensional array of photosensitive pixels receptive of radiation of selected spectral lines and proximate background radiation. The pixels are arranged in a plurality of sub-arrays with each sub-array consisting of at least one of the pixels and are positioned at a projection location on the front surface of at least one of the chip among the sub-arrays are operatively connected to the pixels for producing readout signals correlating with intensities of the selected spectral lines.
Abstract:
Spectroscopy apparatus for spectrochemical analysis of a sample having an excitation source (60) for providing spectral light (62) of the sample for analysis. The spectral light (62) is analysed via an optical system (64-66-68) that includes a polychromator (70, 74-80) and solid state multielement array detector (82). The elements (i.e. pixels) of the detector (82) are serially reel by means (84) to provide light intensity measurements as a function of wavelength. A problem is that the elements (pixels) of the detector (82) continue to accumulate change during the serial read-out. This is avoided by providing an optical shutter (72) for blocking the spectral light (62) whilst elements (pixels) of the detector (82) are being serially read. Shutter (72) has a piezoelectric actuator which is preferably a bimorph mounted as a cantilever. It is preferably located adjacent to the entrance aperture (70) of the polychromator. Bimorph structures for the actuator and drive and protective circuit arrangements are also disclosed.
Abstract:
The invention relates to a spectrometer assembly (10) containing: a radiation source (11) with a continuous spectrum; a pre-monochromator (2) for generating a spectrum with relatively little linear dispersion, from which a spectral segment can be selected, whose spectral bandwidth is less than or equal to the bandwidth of the free spectral range of the order in the echelle spectrum, for which the mean wavelength of the selected spectral segment can be measured with a maximum blaze efficiency; an echelle spectrometer (4) comprising means for wavelength calibration; an entry slit (21) on the pre-monochromator (2) and an intermediate slit assembly (3) comprising an intermediate slit and a local resolution radiation receiver (5) on the exit plane of the spectrometer for detecting wavelength spectra. The assembly is characterised in that the width of the intermediate slit (3) is greater than the monochromatic image of the entry slit generated by the pre-monochromator at the location of the intermediate slit and that means are provided for calibrating the pre-monochromator, by means of which the radiation that is reproduced in the detector of the radiation source with a continuous spectrum can be calibrated to a reference position.