Abstract:
Provided is a near-infrared spectroscopy-based method for chemical pattern recognition of the authenticity of the traditional Chinese medicine Gleditsiae Spina. The method uses the combination of a near-infrared spectroscopy acquisition method, a 1st derivative pretreatment method and a successive projection algorithm, a Kennard-Stone algorithm and a marching algorithm to perform chemical pattern recognition on the authenticity of the Gleditsiae Spina. The results of the pattern recognition method are accurate and reliable, and Gleditsiae Spina and counterfeits thereof can be accurately distinguished. The present application is the first to establish a method for the chemical pattern recognition of the quality of Gleditsiae Spina based on near-infrared spectroscopy, and can accurately distinguish between Gleditsiae Spina and counterfeits thereof, and provides scientific basis for the quality evaluation of Gleditsiae Spina.
Abstract:
An optical sensor includes an interaction region configured to comprise an analyte and an illumination source configured to illuminate the interaction region with an optical input signal. The optical sensor further includes an optical coupling structure configured to collect transmitted parts of the optical input signal from the interaction region and an optical neuromorphic network that is directly optically coupled to the optical coupling structure and is configured to receive and process the transmitted parts of the optical input signal in the optical domain. The invention further concerns a related method for analyzing an analyte by an optical sensor.
Abstract:
An optical sensor includes an interaction region configured to comprise an analyte and an illumination source configured to illuminate the interaction region with an optical input signal. The optical sensor further includes an optical coupling structure configured to collect transmitted parts of the optical input signal from the interaction region and an optical neuromorphic network that is directly optically coupled to the optical coupling structure and is configured to receive and process the transmitted parts of the optical input signal in the optical domain. The invention further concerns a related method for analyzing an analyte by an optical sensor.
Abstract:
In one embodiment, apparatus and methods for determining a parameter of a target are disclosed. A target having an imaging structure and a scatterometry structure is provided. An image of the imaging structure is obtained with an imaging channel of a metrology tool. A scatterometry signal is also obtained from the scatterometry structure with a scatterometry channel of the metrology tool. At least one parameter, such as overlay error, of the target is determined based on both the image and the scatterometry signal.
Abstract:
A hyperspectral method for detecting the present condition of an avian egg is disclosed in which a neural network algorithm is used to compare the spectrum of a test egg against a spectral library. The method can detect fertility with greater than 90% reliability on the day of laying and the gender of the chick with greater than 75% reliability on the 12th day after laying.
Abstract:
A method for multiple analysis of a Raman spectroscopy signal includes repeating a process of obtaining a Raman signal with respect to a sample and a process of measuring a necessary factor with respect to the sample, with respect to a plurality of samples, extracting a plurality of parameters from the Raman signal obtained from each of the plurality of samples, and creating a multiple analysis algorithm such that a calculated property obtained by inputting the plurality of parameters obtained in the extracting of a plurality of parameters for each sample into the multiple analysis algorithm approximates the measured property, and in which a property of an object to be measured is anticipated by inputting a plurality of parameters extracted from a Raman signal with respect to the object to be measured into the learned multiple analysis algorithm.
Abstract:
Systems and methods evaluate the grade or API gravity of petroleum. The methods and systems disclosed herein overcome many of the difficulties commonly associated with petroleum exploration. The methods and systems include collecting fluorescence emission spectra of soil samples and inputting these into an artificial neural network, which is able to rapidly and accurately assess and classify data from multiple soil samples. Additionally, the methods and systems can be useful in identifying other compounds related to or commonly found together with petroleum, including hydrocarbons and aromatic compounds.
Abstract:
Methods of determining asymmetric properties of structures are described. A method includes measuring, for a grating structure, a first signal and a second, different, signal obtained by optical scatterometry. A difference between the first signal and the second signal is then determined. An asymmetric structural parameter of the grating structure is determined based on a calculation using the first signal, the second signal, and the difference.
Abstract:
A method of calibration transfer for a testing instrument includes: collecting a first sample; generating a standard response of a first instrument based, at least in part, on the first sample; and performing instrument standardization of a second instrument based, at least in part, on the standard response of the first instrument. Data corresponding to a second sample is then obtained using the second instrument and a component of the second sample is identified based, at least in part, on a calibration model.
Abstract:
Apparatus for performing Raman spectroscopy may include a first laser source having a first emission wavelength and a second laser source having a second emission wavelength. A separation between the first and second emission wavelengths may correspond to a width of a Raman band of a substance of interest. An optical switch may provide switching between the first and second laser sources. An ensemble of individually addressable laser emitters may be provided. A Bragg grating element may receive laser light from the ensemble. An optical system may direct light from the Bragg grating element into an optical fiber. A combined beam through the optical fiber may contain light from each of the emitters.