Abstract:
Methods of remote control of a mobile robot and an intuitive user interface for remotely controlling a mobile robot are provided. Using a point-and-click device (405), the user is able to choose a target location (430) within a heads-up display (400) toward which to move a mobile robot. Additional graphical overlays (410 &and 412) are provided to aid the user in navigating even in systems with asynchronous communication.
Abstract:
A method, apparatus, and carrier medium carrying computer readable code. The apparatus includes a mobile robot arranged in operation to traverse an area, a first transceiver for a wireless network mounted on the robot and arranged in operation to communicate with a second transceiver to effect radio measurement operations including determining a measure indicative of the path loss between the first and second transceivers, and a location determining system at least a component of which is mounted on the robot and arranged in operation to determine the location of the first transceiver in the area.
Abstract:
Provided is an autonomous mobile device capable of creating, with less burden, a highly reliable environmental map including a setting point and performing more accurate autonomous travel by using the environmental map. An electronic controller 30 configuring an autonomous mobile device 1 comprises: a self-location estimation unit 32 for estimating a self-location based on a local map that is created according to the distance/angle information relative to an object in the vicinity and the travel distance of an omni wheel 13; an environmental map creation unit 33 for creating an environmental map of a mobile area based on the self-location and the local map during the guided travel with using a joystick 21; a registration switch 23 for registering the self-location of the autonomous mobile device as the position coordinate of the setting point when the autonomous mobile device reaches a predetermined setting point during the guided travel; a storage unit 34 for storing the environmental map and the setting point; a route planning unit 35 for planning the travel route by using the setting point on the environmental map stored in the storage unit 34; and a travel control unit 36 for controlling the autonomous mobile device to autonomously travel along the travel route.
Abstract:
A method and system that allows a user to perform automatic study, layout and verification of a multidimensional space in real time where the study can be displayed graphically, in 3-dimensions for example, via a handheld unit allowing the system to guide and/or navigate the user throughout the multidimensional space as the automatic study and/or layout is being performed.
Abstract:
A mobile robot guest for interacting with a human resident performs a room-traversing search procedure prior to interacting with the resident, and may verbally query whether the resident being sought is present. Upon finding the resident, the mobile robot may facilitate a teleconferencing session with a remote third party, or interact with the resident in a number of ways. For example, the robot may carry on a dialogue with the resident, reinforce compliance with medication or other schedules, etc. In addition, the robot incorporates safety features for preventing collisions with the resident; and the robot may audibly announce and/or visibly indicate its presence in order to avoid becoming a dangerous obstacle. Furthermore, the mobile robot behaves in accordance with an integral privacy policy, such that any sensor recording or transmission must be approved by the resident.
Abstract:
The system has an indoor environmental sensor to sense an indoor environment. A controller (24) transmits an information of the indoor environment sensed by the indoor environmental sensor through a wireless transmitting/receiving part. A control server (30) receives the information transmitted from a mobile sensor (10) to control an indoor environmental control device (40) based on the received information. An independent claim is also included for a method of controlling an indoor environmental control system.
Abstract:
The invention relates to a robot system, including: a base station; and a robot, the base station including a wireless transceiver capable of communicating TCP/IP transmissions over a local wireless protocol, a wired Ethernet connector for communicating TCP/IP transmissions over a local wired Ethernet accessing the Internet, and an access point circuit for transferring TCP/IP transmissions between the local wired Ethernet and local wireless protocol limited to a predetermined IP address locked to the robot, predetermined shell level encryption locked to the robot, and predetermined ports to the Internet open only to the robot, the robot including a wireless transceiver capable of communicating TCP/IP transmissions over a local wireless protocol and a client circuit for transferring TCP/IP transmissions over the local wireless protocol.