Abstract:
A method and apparatus for autonomously managing operation of an unmanned aerial vehicle (202). Sensor data (228) is received by a computer system (224) located onboard the unmanned aerial vehicle (202). The sensor data (228) is processed by the computer system (224) to generate information of interest (230) related to at least one target, while the unmanned aerial vehicle (202) is out of a communications range (218) of a control station (210). A number of actions (225) to be performed is identified by the computer system (224) based on the information of interest (230) related to the at least one target, while the unmanned aerial vehicle (202) is out of the communications range (218) of the control station (210).
Abstract:
Vehicles feature various forms of automated driving control, such as speed control and braking distance monitoring. However, the parameters of automated control may conflict with the user driving behaviors of the user; e.g., braking distance maintained with respect to a leading vehicle may seem overcautious to users who prefer shorter braking distances, and unsafe to users who prefer longer braking distances. Presented herein are techniques for controlling vehicles according to the user driving behaviors of users. While a user operates a vehicle in a driving context, a device monitors various driving features (e.g., acceleration or braking) to determine various user driving behaviors. When requested to control a driving feature of the vehicle, a controller may identify the user driving behaviors of the user in the driving context, and control the driving features according to the user driving behaviors, thus personalizing automated driving to the preferences of the user.
Abstract:
Vehicles feature various forms of automated driving control, such as speed control and braking distance monitoring. However, the parameters of automated control may conflict with the user driving behaviors of the user; e.g., braking distance maintained with respect to a leading vehicle may seem overcautious to users who prefer shorter braking distances, and unsafe to users who prefer longer braking distances. Presented herein are techniques for controlling vehicles according to the user driving behaviors of users. While a user operates a vehicle in a driving context, a device monitors various driving features (e.g., acceleration or braking) to determine various user driving behaviors. When requested to control a driving feature of the vehicle, a controller may identify the user driving behaviors of the user in the driving context, and control the driving features according to the user driving behaviors, thus personalizing automated driving to the preferences of the user.
Abstract:
Vehicles feature various forms of automated driving control, such as speed control and braking distance monitoring. However, the parameters of automated control may conflict with the user driving behaviors of the user; e.g., braking distance maintained with respect to a leading vehicle may seem overcautious to users who prefer shorter braking distances, and unsafe to users who prefer longer braking distances. Presented herein are techniques for controlling vehicles according to the user driving behaviors of users. While a user operates a vehicle in a driving context, a device monitors various driving features (e.g., acceleration or braking) to determine various user driving behaviors. When requested to control a driving feature of the vehicle, a controller may identify the user driving behaviors of the user in the driving context, and control the driving features according to the user driving behaviors, thus personalizing automated driving to the preferences of the user.
Abstract:
The present invention provides systems, methods, and devices related to target tracking by UAVs. The UAV may be configured to receive target information from a control terminal related to a target to be tracked by an imaging device coupled to the UAV. The target information may be used by the UAV to automatically track the target so as to maintain predetermined position and/or size of the target within one or more images captured by the imaging device. The control terminal may be configured to display images from the imaging device as well as allowing user input related to the target information.
Abstract:
A method and apparatus for autonomously managing operation of an unmanned aerial vehicle (202). Sensor data (228) is received by a computer system (224) located onboard the unmanned aerial vehicle (202). The sensor data (228) is processed by the computer system (224) to generate information of interest (230) related to at least one target, while the unmanned aerial vehicle (202) is out of a communications range (218) of a control station (210). A number of actions (225) to be performed is identified by the computer system (224) based on the information of interest (230) related to the at least one target, while the unmanned aerial vehicle (202) is out of the communications range (218) of the control station (210).
Abstract:
The invention provides an aerial photogrammetry by using two or more of flying vehicles each equipped with a GPS device and an image pickup unit, comprising a step of setting up two or more photographing points and of setting up a photographing point area respectively with each of the photographing points as the center, a step of measuring a position of the flying vehicle by said GPS device, a step where each of the flying vehicle reaches each corresponding photographing point area and maintains the position of the photographing point area, a step of acquiring a time when the flying vehicle finally reaches the photographing point area, a step of setting up a shutter timing time after a predetermined time from the moment when the flying vehicle has finally reached the photographing point area, and a step of taking aerial photographs by the two or more flying vehicles at the shutter timing time.
Abstract:
The invention relates to a geodetic measuring system (1) having a geodetic measuring unit (30), in particular a total station, a theodolite, a laser tracker or a laser scanner, having a beam source for emitting a substantially collimated optical beam (32), a base, a sighting unit which can be pivoted in a motorized manner about two axes relative to the base and is intended to orient an emission direction of the optical beam (32), and angle measurement sensors for determining the orientation of the sighting unit. The measuring system (1) also has an automotive, unmanned, controllable air vehicle (20) having an optical module (22), wherein the air vehicle (20) is designed in such a manner that the air vehicle (20) can be moved in a controlled manner and can be positioned in a substantially fixed position. An evaluation unit is also provided, wherein the evaluation unit is configured in such a manner that an actual state of the air vehicle (20), as determined by a position, an orientation and/or a change in position, can be determined in a coordinate system from interaction between the optical beam (32) and the optical module (22). The measuring system (1) has a control unit (60) for controlling the air vehicle (20), wherein the control unit (60) is configured in such a manner that control data can be produced using an algorithm on the basis of the actual state, which can be continuously determined in particular, and a defined desired state, and the air vehicle (20) can be automatically changed to the desired state, in particular to a defined tolerance range around the desired state, in a controlled manner using the control data.