Abstract:
A dual ducted fan arrangement in which the duct components (203), engine (10), and avionics/payload pods (300, 302) are capable of being quickly disassembled to fit within common backpacking systems. Each duct is identical in fan (201 ), stator (102), and control vane design. Assembly connections between ducted fans (203) and electronic modules are also identical. An engine (10) or APU drives the dual ducted fans (203) through a splined shaft (601) to a differential (600) or through electric motors. Energy is transferred to the ducted fans by a single gear mounted to the stator (102) hub. Relative speeds of the individual ducted fans are controlled through separate frictional or generator load control braking mechanisms (603) on each of the splined shafts (601) between the differential (600) and ducted fans (203). In the electric motor case relative speed is through electronic speed control. The fans (201 ) are counter rotating for torque balancing. The electronic module locations are vertically variable for longitudinal center of gravity for variations in payloads.
Abstract:
A manipulator arm system (1) on a ducted air-fan UAV is disclosed herein. The target site may be accurately located by the UAV, and the manipulator system may accurately locate the payload at the target site. The manipulator arm may select tools from a toolbox located on-board the UAV to assist in payload placement or the execution of remote operations. The system may handle the delivery of mission payloads, environmental sampling, and sensor placement and repair.
Abstract:
A dual ducted fan arrangement in which the duct components (203), engine (10), and avionics/payload pods (300, 302) are capable of being quickly disassembled to fit within common backpacking systems. Each duct is identical in fan (201 ), stator (102), and control vane design. Assembly connections between ducted fans (203) and electronic modules are also identical. An engine (10) or APU drives the dual ducted fans (203) through a splined shaft (601) to a differential (600) or through electric motors. Energy is transferred to the ducted fans by a single gear mounted to the stator (102) hub. Relative speeds of the individual ducted fans are controlled through separate frictional or generator load control braking mechanisms (603) on each of the splined shafts (601) between the differential (600) and ducted fans (203). In the electric motor case relative speed is through electronic speed control. The fans (201 ) are counter rotating for torque balancing. The electronic module locations are vertically variable for longitudinal center of gravity for variations in payloads.
Abstract:
Ein unbemannter Hubschrauber weist einen Verbrennungsmotor und einen zugehörigen Treibstofftank auf. Die Einheit (1) aus Verbrennungsmotor und Getriebe ist im wesentlichen in einem selbsttragenden, wenigstens teilweise rundum geschlossenem Gehäuse (2), vorzugsweise aus kohlefaserverstärktem Kunststoff (CFK) angeordnet, an den nach vorne ein Nasenkörper (3) anschließt. Dadurch wird ein kompakter Aufbau erreicht.
Abstract:
A robotic or remotely controlled flying platform (10) with reduced drag stabilizing control apparatus constructed having an air duct (12) with an air intake (14) on the top and an exhaust (16) at the bottom, containing supported therein a clockwise rotating fan (22) and a counter-clockwise rotating fan (24). Directly below the perimeter of the air duct exhaust are mounted a plurality of trough shaped air deflection assemblies (32) each including a rotatably adjustable half trough (44) for selectively scooping a portion of the drive air, and a stationary adjacent half trough (36) for receiving the scooped drive air and redirecting it outward and upward from the air duct. A centrally positioned plate (112) has a plurality of rods (106), each pivotably connected between the plate (74) and a corresponding lever associated with each of the adjustable half troughs (44) so as to couple the adjustable half trough (44) in or out of the drive air steam according to the position of the plate (74), thereby providing control over the pitch and roll of the flying platform. The plate is driven by first and second motors responding to input control signals. The control signals also direct the yaw of the flying platform by selectively providing independent speed control to each of the clockwise and counter clockwise fan motors resulting in duct rotation in a clockwise or counter clockwise direction accordingly.
Abstract:
An unmanned aerial vehicle that includes a fuselage (12) with a partial toroidal forward portion, and an aft portion. A duct (18) is formed through the fuselage and extends from the top to the bottom of the fuselage. Two counter-rotating rotor assemblies (16) are mounted within the duct for providing downward thrust through the duct. The rotor assemblies are supported by a plurality of support struts (20). At least one engine is mounted within the fuselage and engages with the rotor assemblies. A pusher prop assembly (50) is amounted to the aft portion of the fuselage. The pusher prop assembly is designed to provide forward thrust along the longitudinal axis of the aircraft. The pusher prop assembly includes a drive shaft (58) that is engaged with the engine. A plurality of propellers (56) are attached to and rotated by the drive shaft. A shroud (54) is mounted to the aft portion of the fuselage around the propellers and is operative for channelling the air passing through the propellers in a substantially aft direction. A pair of wings (42) is removably attached to the sides of the fuselage. Each wing preferably includes a fixed portion and a pivotal flaperon portion hinged to the fixed portion. Directional vanes (60) are preferably mounted to the shroud downstream from the propellers and control flow out of the shroud. Deflectors may be mounted to the bottom of the fuselage across a portion of the duct to control flow of air into the duct.
Abstract:
A robotic or remotely controlled flying platform (10) with reduced drag stabilizing control apparatus constructed having an air duct (12) with an air intake (14) on the top and an exhaust (16) at the bottom, containing supported therein a clockwise rotating fan (22) and a counter-clockwise rotating fan (24). Directly below the perimeter of the air duct exhaust are mounted a plurality of trough shaped air deflection assemblies (32) each including a rotatably adjustable half trough (44) for selectively scooping a portion of the drive air, and a stationary adjacent half trough (36) for receiving the scooped drive air and redirecting it outward and upward from the air duct. A centrally positioned plate (112) has a plurality of rods (106), each pivotably connected between the plate (74) and a corresponding lever associated with each of the adjustable half troughs (44) so as to couple the adjustable half trough (44) in or out of the drive air steam according to the position of the plate (74), thereby providing control over the pitch and roll of the flying platform. The plate is driven by first and second motors responding to input control signals. The control signals also direct the yaw of the flying platform by selectively providing independent speed control to each of the clockwise and counter clockwise fan motors resulting in duct rotation in a clockwise or counter clockwise direction accordingly.
Abstract:
An unmanned aerial vehicle (UAV) (100) having a toroidal fuselage (120) and a rotor assembly (170) including counter-rotating rotors coaxially mounted with respect to the toroidal fuselage incorporates ancillary aerodynamic structures (18) having a cambered airfoil profile to provide a nose-down pitching moment to counteract the nose-up pitching moment generated by airflow over the toroidal fuselage during forward translational flight of the UAV. The ancillary aerodynamic structures are symmetrically mounted in combination with the lateral sides of the toroidal fuselage so that the centers of lift are located aftwardly of the fuselage axis of the toroidal fuselage in forward translational flight modes. In a first embodiment, the ancillary aerodynamic structures (18) are fixedly mounted in combination with the toroidal fuselage (10) at a predetermined angle of incidence. In a second embodiment, the ancillary aerodynamic structures (19) are rotatably mounted in combination with the toroidal fuselage (10') to provide variable incidence ancillary aerodynamic structures for the UAV.
Abstract:
The invention relates to an aircraft with vertical takeoff and landing and its operation method. Aircraft with vertical takeoff and landing of aerodyne type according to the invention comprises a circular symmetrical aerodynamic body (1) having an internal stiffening platform (2) located on the chord of the aerodynamic profile and which supports the components of the aircraft, at least four vertical ducted propellers (3a), (3b), (3c), (3d) arranged symmetrically to the central vertical axis of the carrier body (1), but also to the predetemined flight axis and to the transverse axis of the carrier body (1), propellers (3a) and (3c) having the same rotational direction opposite to that of propellers (3b) and (3d) at least two horizontal ducted propellers (4) with opposite rotation directions located inside the carrier body or outside of it, placed parallel symmetrical with the predetermined flight axis and on both sides of it, vector nozzles (5), one for each horizontal propeller (4), which provides vector orientation to jets of the horizontal ducted propellers (4), the means of power supply (6), which are designed to provide electricity necessary to operate all engines and all electrical and electronic devices on board, an electronic control and management flight module (7) and a landing gear (9), which aims to promote contact between the aircraft and the ground.