Abstract:
This disclosure provides systems, methods and apparatus for forming an air gap in an EMS device without using a sacrificial layer in the air gap. In some implementations, a support structure is formed on the substrate, and a sacrificial substrate is provided on the support structure. A liner material is deposited on the substrate, the support structure, and the sacrificial substrate, for instance, via an atomic layer deposition (ALD) process. The sacrificial substrate can be removed, and a top layer material can be deposited on the exposed areas of the support structure and the liner material. The liner material defines an air gap between the substrate and the top layer material.
Abstract:
Disclosed is a method for arranging nanostructures and a method for fabricating a nano device. The method for arranging nanostructures in a certain direction includes: forming a sacrificial structure having a face in the certain direction on a substrate; forming the nanostructures at least on the face of the certain direction of the sacrificial structure; and removing the sacrificial structure.
Abstract:
A MEMS comprising a sacrificial structure, which comprises a faster etching portion and a slower etching portion, exhibits reduced damage to structural features when in forming a cavity in the MEMS by etching away the sacrificial structure. The differential etching rates mechanically decouple structural layers, thereby reducing stresses in the device during the etching process. Methods and systems are also provided.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung von MEMS-Strukturen mit mindestens einer Funktionsschicht aus Silizium, die Strukturen enthält, die durch Entfernen einer Opferschicht freigestellt werden, wobei mindestens eine Opferschicht und mindestens eine Funktionsschicht so abgeschieden werden, dass sie einkristallin aufwachsen, und die Opferschicht aus einer Silizium-Germanium-Mischschicht besteht.
Abstract:
Die Erfindung betrifft einen Sensor, insbesondere zur ortsaufgelösten Detektion, der aufweist ein Substrat (1), mindestens ein mikrostrukturiertes Sensorelement (52) mit einer ihren Wert temperaturabhängig ändernden elektrischen Eigenschaft, und mindestens einer Membran (36.1) oberhalb einer Kaverne (26, 74, 94), wobei das Sensorelement (52) an der Unterseite der mindestens einen Membran (36.1) angeordnet ist, und wobei das Sensorelement (52) über Zuleitungen (60, 62; 98-1, 98-2, 100-1, 100-2) kontaktiert sind, die in, auf oder unter der Membran (36.1) verlaufen. Es können insbesondere mehrere Sensorelemente (52) als Diodenpixel in einer monokristallinen, durch Epitaxie ausgebildeten Schicht ausgebildet sein. In der Membran (36.1) können Aufhängefedern (70) ausgebildet sein, die die einzelnen Sensorelemente (52) elastisch und isolierend aufnehmen.
Abstract:
Methods of forming a protective coating on one or more surfaces of a microelectromechanical device are disclosed comprising the steps of forming a composite layer of a sacrificial material and a protective material, and selectively etching the sacrificial material to form a protective coating. The protective coatings of the invention preferably improve one or more aspects of the performance of the microelectromechanical devices in which they axe incorporated. Also disclosed are microelectromechanical devices formed by methods of the invention, and visual display devices incorporating such devices.
Abstract:
The device (100) comprises a substrate (10) of a semiconductor material with a first and an opposite second surface (1,2) and a microelectromechanical (MEMS) element (50) which is provided with a fixed and a movable electrode (52, 51) that is present in a cavity (30). One of the electrodes (51,52) is defined in the substrate (10). The movable electrode (51) is movable towards and from the fixed electrode (52) between a first gapped position and a second position. The cavity (30) is opened through holes (18) in the substrate (10) that are exposed on the second surface (2) of the substrate (10). The cavity (30) has a height that is defined by at least one post (15) in the substrate (10), which laterally substantially surrounds the cavity (15).
Abstract:
In one embodiment, the invention provides a method for fabricating a microelectromechanical systems device. The method comprises fabricating a first layer comprising a film having a characteristic electromechanical response, and a characteristic optical response, wherein the characteristic optical response is desirable and the characteristic electromechanical response is undesirable; and modifying the characteristic electromechanical response of the first layer by at least reducing charge build up thereon during activation of the microelectromechanical systems device.