Abstract:
The present invention relates to a medical X-rayexamination apparatus and method for performing k-edge imaging of an object of interest including material showing k- edge absorption. To allow the use of conventional detector technology, which does not suffer from the limitation to provide very high k-rate capabilities a method is proposed comprising the steps of: -emitting polychromatic X-ray radiation (4; 4a, 4b), -Bragg filtering said polychromatic X-rayradiation by a Bragg filter such that radiation (16) transmitted through said Bragg filter (14; 14a, 14b) passes through said object (5), -detecting X-rayradiation after passing through said object (5), -acquiring projection data at at least two different Bragg reflection angles of said Bragg filter (14; 14a, 14b), and -reconstructing a k-edge image from the acquired projection data.
Abstract:
An x-ray analysis apparatus for illuminating a sample spot with an x-ray beam. An x-ray tube is provided having a source spot from which a diverging x-ray beam is produced having a characteristic first energy, and bremsstrahlung energy; a first x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam; and a second x-ray optic receives the diverging x-ray beam and directs the beam toward the sample spot, while monochromating the beam to a second energy. The first x-ray optic may monochromate characteristic energy from the source spot, and the second x-ray optic may monochromate bremsstrahlung energy from the source spot. The x-ray optics may be curved diffracting optics, for receiving the diverging x-ray beam from the x-ray tube and focusing the beam at the sample spot. Detection is also provided to detect and measure various toxins in, e.g., manufactured products including toys and electronics.
Abstract:
An x-ray analysis system with an x-ray source for producing an x-ray excitation beam directed toward an x-ray analysis focal area; and a sample chamber for presenting a fluid sample to the x-ray analysis focal area. The x- ray excitation beam is generated by an x-ray engine and passes through an x- ray transparent barrier on a wall of the chamber, to define an analysis focal area within space defined by the chamber. The fluid sample is presented as a stream suspended in the space and streaming through the focal area, using a laminar air flow and/or pressure to define the stream. The chamber's barrier is therefore separated from both the focal area and the sample, resulting in lower corruption of the barrier.
Abstract:
A collector optical system for extreme ultraviolet (EUV) or X-ray applications, including lithography and imaging, for example at 13 5 nm, comprising a grazing incidence collector in combination with a laser produced plasma (LPP) source In one embodiment, one or more further optical elements act upon one or more laser beams used to generate the EUV or X-ray plasma source, whereby said laser beam(s) ιmpact(s) on the fuel target from a side thereof on which an intermediate focus is disposed Also disclosed is a collector for EUV and X-ray applications, in which radiation from a laser produced plasma source is reflected by the collector to an intermediate focus, the line joining the source and intermediate focus defining an optical axis, a first direction on the optical axis being defined from the source to the intermediate focus, characterised by the collector comprising one or more grazing incidence mirrors, and by the collector comprising one or more further optical elements for redirecting a received laser beam so as to be incident upon the source (a) in a second direction, opposite to said first direction, or (b) at an acute angle to said second direction The further optical elements may comprise plane or spherical mirrors and/or lenses, for example disposed on the optical axis Also disclosed is a collector for application at about 13 5 nm with Laser Produced Plasma sources, the collector comprising between 5 and 16 concentrically aligned mirrors, and preferably between 6 and 12 mirrors, that operate at grazing incidence such that the maximum grazing angle between the incident radiation and the reflective surface of the mirrors is about 30°, and more preferably about 25°, in order to allow a maximum collection angle from the source of about 40° to about 85°, and preferably about 45° to about 75° Also disclosed is an EUV lithography system comprising a radiation source, for example a LPP source, the collector, an optical condenser, and a reflective mask
Abstract:
A reflective optical system, in which radiation from a radiation source (e.g. laser produced plasma, or source at infinity) is directed to an image focus or intermediate focus, comprising: one or more mirrors (symmetric about the optical axis), the or each mirror having at least first and second reflective surfaces whereby, in use, radiation from the source undergoes successive grazing incidence reflections in an optical path at said first and second reflective surfaces; and wherein said at least first and second reflective surfaces are formed such that the angles of incidence of said successive grazing incidence reflections at said first and second reflective surfaces are substantially equal. A formula for the preferred geometry of the reflective surface is disclosed. The or each mirror may be formed as an electroformed monolithic component, wherein the first and second reflective surfaces are each provided on a respective one of two contiguous sections of the mirror. The reflective optical system may be embodied in a collector optical system for EUV lithography, or in an EUV or X-ray telescope or imaging optical system.
Abstract:
An x-ray imaging system includes an optical device having at least one point-focusing, curved monochromating optic 320 for directing x-rays from an x-ray source 300 towards a focal point 360. The at least one point-focusing, curved monochromating optic provides a focused monochromatic x-ray beam directed towards the focal point, and a detector 350 is aligned with the focused monochromatic x-ray beam. The optical device facilitates x-ray imaging of an object 340 when the object is located between the optical device and the detector within the focused monochromatic x-ray beam. In various embodiments: each point-focusing, curved monochromatic optic has an optical surface that is doubly-curved; the optical device facilitates passive image demagnification or magnification depending upon placement of the object and detector relative to the focal point; and at least one second point-focusing, curved monochromatic optic can be employed to facilitate refractive index or polarized beam imaging of the object.
Abstract:
Compact, low-power-consuming systems and methods for exposing samples to high-energy radiation, for example, for exposing samples to x-rays for implementing x-ray absorption near edge analysis (XANES). The systems and methods include a low-power-consuming radiation source, such as an x-ray tube; one or more tunable crystal optics for directing and varying the energy of the radiation onto a sample under analysis; and a radiation detecting device, such as an x-ray detector, for detecting radiation emitted by the sample. The one or more tunable crystal optics may be doubly-curved crystal optics. The components of the system may be arranged in a collinear fashion. The disclosed systems and methods are particularly applicable to XANES analysis, for example, XANES analysis of the chemical state of chromium or another transition metal in biological processes.
Abstract:
L'invention concerne un dispositif optique destiné à traiter un faisceau incident de rayons X, ledit dispositif comprenant : un monochromateur et un élément optique de conditionnement du faisceau incident dont la surface réfléchissante est apte à produire un effet optique bidimensionnel pour adapter un faisceau à destination du monochromateur, ledit élément optique comprenant une surface réfléchissante aux rayons X de type structure multicouche,caractérisé par le fait que ladite surface réfléchissante est constituée d'une surface unique, ladite surface réfléchissante étant conformée selon deux courbures correspondant à deux directions différentes.
Abstract:
Die Erfindung betrifft eine Kollektoreinheit für Beleuchtungssysteme mit einer Wellenlänge ≤ 193 nm bevorzugt im Bereich der EUV-Wellenlängen mit mindestens einer Spiegelschale, die eine optische Wirkung aufweist, wobei die Strahlen unter einem Winkel - ≤ 20° zur Oberflächentangente der Spiegelschale auftreffen, und auf mindestens einem Teil der Spiegelschale eine periodische Struktur mit mindestens einer Gitterperiode aufgebracht ist.
Abstract:
The invention concerns an illumination system, particularly for microlithography with wavelengths ≤ 93 nm, comprising: a primary light source; a first optical component; a second optical component; an image plane; and an exit pupil; wherein said first optical component transforms said primary light source into a plurality of secondary light sources that are imaged by said second optical component in said exit pupil, wherein said first optical component includes a first optical element having a plurality of first raster elements, that are imaged into said image plane, producing a plurality of images being superimposed at least partially on a field in said image plane, wherein said plurality of first raster elements are rectangular, wherein said filed is a segment of an annulus, and wherein said second optical component includes a first field mirror with negative optical power for shaping said field to said segment of said annulus and a second field mirror with positive optical power, wherein each of a plurality of rays intersects said first field mirror with an incidence angel greater than 70 DEG and wherein each of a plurality of rays intersects said second field mirror with an incidence angle of less than 25 DEG .