Abstract:
A plasma processing apparatus for processing a substrate with a plasma is disclosed. The apparatus includes a first RF power source having a first RF frequency, and a process chamber. Further, the apparatus includes a substantially circular antenna operatively coupled to the first RF power source and disposed above a plane defined by the substrate when the substrate is disposed within the process chamber for processing. The substantially circular antenna being configured to induce an electric field inside the process chamber with a first RF energy generated by the first RF power source. The substantially circular antenna including at least a first pair of concentric loops in a first plane and a second pair of concentric loops in a second plane. The first pair of concentric loops and the second pair of concentric loops being substantially identical and symmetrically aligned with one another. The substantially circular antenna forming an azimuthally symmetric plasma inside the process chamber. The apparatus also includes a coupling window disposed between the antenna and the process chamber. The coupling window being configured to allow the passage of the first RF energy from the antenna to the interior of the process chamber. The coupling window having a first layer and a second layer. The second layer being configured to substantially suppress the capacitive coupling formed between the substantially circular antenna and the plasma. The substantially circular antenna and the coupling window working together to produce a substantially uniform process rate across the surface of the substrate.
Abstract:
Methods and systems to optimize wafer placement repeatability in semiconductor manufacturing equipment using a controlled series of wafer movements are provided. In one embodiment, a preliminary station calibration is performed to teach a robot position for each station interfaced to facets of a vacuum transfer module used in semiconductor manufacturing. The method also calibrates the system to obtain compensation parameters that take into account the station where the wafer is to be placed, position of sensors in each facet, and offsets derived from performing extend and retract operations of a robot arm. In another embodiment where the robot includes two arms, the method calibrates the system to compensate for differences derived from using one arm or the other. During manufacturing, the wafers are placed in the different stations using the compensation parameters.
Abstract:
A bevel inspection module for capturing images of a substrate is provided. The module includes a rotational motor, which is attached to a substrate chuck and is configured to rotate the substrate chuck thereby allowing the substrate to revolve. The module further includes a camera and an optic enclosure, which is attached to the camera and is configured to rotate, enabling light to be directed toward the substrate. The camera is mounted from a camera mount, which is configured to enable the camera to rotate on a 180 degree plane allowing the camera to capture images of at least one of a top view, a bottom view, and a side view of the substrate. The module yet also includes a backlight arrangement, which is configured to provide illumination to the substrate, thereby enabling the camera to capture the images, which shows contrast between the substrate and a background.
Abstract:
In a plasma processing system, a method of reducing byproduct deposits on a set of plasma chamber surfaces of a plasma processing chamber is disclosed. The method includes providing a deposition barrier in the plasma processing chamber, the deposition barrier is configured to be disposed in a plasma generating region of the plasma processing chamber, thereby permitting at least some process byproducts produced when a plasma is struck within the plasma processing chamber to adhere to the deposition barrier and reducing the byproduct deposits on the set of plasma processing chamber surfaces.
Abstract:
In a plasma processing system, a method of reducing byproduct deposits on a set of plasma chamber surfaces of a plasma processing chamber is disclosed. The method includes providing a deposition barrier in the plasma processing chamber, the deposition barrier is configured to be disposed in a plasma generating region of the plasma processing chamber, thereby permitting at least some process byproducts produced when a plasma is struck within the plasma processing chamber to adhere to the deposition barrier and reducing the byproduct deposits on the set of plasma processing chamber surfaces.
Abstract:
A robot apparatus for executing a set of service procedures on a plasma processing system including a docking port is disclosed. The apparatus includes a platform and a docking probe coupled to the platform, wherein the docking probe is configured to dock with the docking port. The apparatus also includes a robot arm coupled to the platform, and further configured to substantially perform the set of service procedures, and a tool coupled to the robot arm. The apparatus further includes a computer coupled to the platform, wherein the computer is further configured to execute the set of service procedures, and wherein when the docking probe is docked to the docking port, the set of service procedures is performed by the tool.
Abstract:
In a plasma processing system, a method of reducing byproduct deposits on a set of plasma chamber surfaces of a plasma processing chamber is disclosed. The method includes providing a deposition barrier in the plasma processing chamber, the deposition barrier is configured to be disposed in a plasma generating region of the plasma processing chamber, thereby permitting at least some process byproducts produced when a plasma is struck within the plasma processing chamber to adhere to the deposition barrier and reducing the byproduct deposits on the set of plasma processing chamber surfaces.
Abstract:
Methods for improving the stability of RF power delivery to a plasma load are disclosed (806). The method includes adding an RF impedance resistor and or a RF power attenuator at one of specific locations in the RF power system to lower the impedance derivatives while keeping the impedance marching circuit in tune with the RF transmission line impedance (804).
Abstract:
Methods for improving the stability of RF power delivery to a plasma load are disclosed. The method includes adding an RF resistor and/or a power attenuator at one of many specific locations in the RF power system to lower the impedance derivatives while keeping the matching circuit substantially in tune with the RF transmission line.
Abstract:
A method for cleaning a processing chamber that includes heating an inner surface of the processing chamber to a first temperature. The first temperature can be sufficient to cause a first species to become volatile. The first species can be one of several species deposited on the inner surface. A cleaning chemistry is injected into the processing chamber. The cleaning chemistry can be reactive with a second one of the species to convert the second species to the first species. The volatilized first species can also be output from the processing chamber. A system for cleaning the process chamber is also described.