Abstract:
A method of evaluating a maximal dose deposited by an X-ray beam within a medium comprises the steps of: (a) irradiating said medium by said X-rays beam penetrating into a depth of said medium along an axis of said X-ray beam; (b) measuring a dose distribution along said axis. The step of measuring said dose distribution further comprises measuring cross-sectional distributions with a predetermined incremental shift thereof along said beam axis, and calculating a 1-dimesional function of said maximal dose in dependence on said depth taken from maximum dose at each cross-sectional distribution at each depth.
Abstract:
New techniques for converging X-rays are described. These techniques can be used for the design of an X-ray lens for the converging of X-rays into a focal point or a focal volume using a point source or an extended source. The aim of this design is to add important new features over those of the previous suggested patented device. The additional features are to provide control of the size and shape of the focal volume, the beam shape, uniformity and quality, and ease of manufacturing.
Abstract:
Methods and devices are provided to enable treatment and imaging of a target in an X-ray system. In some configurations, radiation from a single X-ray source is used to provide both imaging and treatment radiations. A shutter is placed in a path between the X-ray source and the target to selectively control the imaging radiation that irradiates the target. Another shutter can be placed in a path between the X-ray source and the target to selectively control the treatment radiation. The operations of the shutters are controlled to allow simultaneous or time-multiplexed irradiation of the target with the imaging and treatment radiations. A detector captures the imaging radiation after it has interacted with the target and enables accurate determination of target characteristics, including the size and shape of the target.
Abstract:
A method of a radiotherapy or radiosurgery treatment comprises steps of: (a) providing a converging x-ray beam source configured for emitting a converging X-ray beam propagating along an axis thereof; (b) emitting the converging x-ray beam towards a volume of treatment (VOT) having a length along the axis of the converging X-ray beam ranging between 2 mm and 5 cm within a patient's body such that a waist portion is within the VOT; (c) propagating the beam through tissues previously located relative to the VOT (PO); the VOT per se and tissues distally located to the VOT (DO). The converging X-ray beam characterized by a convergent angle ranging between 2 and 30 degrees providing 80% to 100% of a maximum dose is received by the VOT and less than 60% of the maximum dose is received by the PO and the DO.
Abstract:
A method of evaluating a maximal dose deposited by a non-uniform X-ray beam within a medium comprising the steps of: (a) irradiating said medium by said non-uniform X-ray beam penetrating into a depth of said medium along an axis of said X-ray beam; (b) incrementally measuring a number of transversal dose distributions at successive depths along said axis; (c) determining a maximum dose within each of said number of transversal dose distributions; and (d) calculating a 1-Dimesional depth dependance of said maximal doses obtained from said number of transversal dose distributions.
Abstract:
The present invention provides a method for activating a pro-drug in vivo comprising the steps of: (a) administering a pro-drag to a subject; (b) locating a target site which has been at least partially dosed with the pro-drug at a predetermined concentration; and (d) exposing the target site to X-ray radiation. The step of exposing the target site to X-ray radiation is characterized by providing a converging X-ray of a controllable waist, substantially uniform at the target site, sufficient to convert the pro-drug to an active drug, while the X-ray photon dosage at the target site is higher than the X-ray photon dosage at an adjacent non target site.
Abstract:
An X-ray lens arrangement for forming a radiation pattern as a focal track is disclosed. The pattern comprises at least one 3-dimensional focal track of radiation. The aforesaid lens arrangement has a main axis passing through intensity weighted centroids of the Xray source and the pattern. The lens arrangement includes at least one reflecting surface of continuously varying Rowland arcs. Each point belonging to the focal track is linked to each elemental point composing an emitting surface of said source by a corresponding Rowland arc.
Abstract:
A method of a radiotherapy or radiosurgery treatment comprises steps of: (a) providing a converging x-ray beam source configured for emitting a converging X-ray beam propagating along an axis thereof; (b) emitting the converging x-ray beam towards a volume of treatment (VOT) having a length along the axis of the converging X-ray beam ranging between 2 mm and 5 cm within a patient's body such that a waist portion is within the VOT; (c) propagating the beam through tissues previously located relative to the VOT (PO); the VOT per se and tissues distally located to the VOT (DO). The converging X-ray beam characterized by a convergent angle ranging between 2 and 30 degrees providing 80% to 100% of a maximum dose is received by the VOT and less than 60% of the maximum dose is received by the PO and the DO.
Abstract:
The present invention provides a method for activating a pro-drug in vivo comprising the steps of: (a) administering a pro-drag to a subject; (b) locating a target site which has been at least partially dosed with the pro-drug at a predetermined concentration; and (d) exposing the target site to X-ray radiation. The step of exposing the target site to X-ray radiation is characterized by providing a converging X-ray of a controllable waist, substantially uniform at the target site, sufficient to convert the pro-drug to an active drug, whilst the X-ray photon dosage at the target site is higher than the X-ray photon dosage at an adjacent non target site.
Abstract:
An X-ray lens arrangement for forming a radiation pattern as a focal track is disclosed. The pattern comprises at least one 3-dimensional focal track of radiation. The aforesaid lens arrangement has a main axis passing through intensity weighted centroids of the X-ray source and the pattern. The lens arrangement includes at least one reflecting surface of continuously varying Rowland arcs. Each point belonging to the focal track is linked to each elemental point composing an emitting surface of said source by a corresponding Rowland arc.