Abstract:
A modular system uses point-to-point communication between field-programmable gate arrays (FPGAs) on a control module and each port module, respectively, to manage basic module functions, such as power, environmental monitoring, and health checks on the modules and their components. This allows a chassis to be managed without fully powering each card first, frees processors on the modules from having to perform health checks, allows dedicated resources to rapidly monitor the health of each card, and prevents one bad card from disabling management of all cards.
Abstract:
A high-speed router backplane, and method for its fabrication, are disclosed. The backplane uses differential signaling trace pairs on multiple high-speed signaling layers, the high-speed signaling layers separated by ground planes. Plated signaling thru-holes connect the trace pairs to the board surface for connection to external components. The signaling thru-holes pass through clearances in each ground plane. At selected ground planes, a conductive pad is patterned within each high-speed signaling thru-hole clearance, the pad slightly larger than the thru-hole diameter. The pads affect the impedance characteristics of the thru-holes, thus providing a better impedance match to the differential trace pairs, reducing signal reflections, and improving the ability to signal across the backplane at high speeds.
Abstract:
In one embodiment, a hybrid backplane coding scheme transmits data using lengthy sequences of scrambled data, separated by 8b/ 10b control character sequences that prepare the receiver for the next scrambled sequence and permit realignment if necessary. Several lanes are coded separately in this manner, and then multiplexed on a common channel. Alignment sequences in the control character sequences, as well as scrambler seeds, are set to avoid synchronization of patterns generated among all lanes, which would tend to confuse a receiving serdes and/or phase-locked loop that recovers timing from the multiplexed scrambled signals.
Abstract:
A high-speed, high-power modular router is disclosed. As opposed to conventional designs using optical backplane signaling and/or bus bars for power distribution, the disclosed embodiments combine high-power, low-noise power distribution with high-speed signal routing in a common backplane. Disclosed backplane features allow backplane signaling at 2.5 Gbps or greater on electrical differential pairs distributed on multiple high-speed signaling layers. Relatively thick power distribution layers are embedded within the backplane, shielded from the high-speed signaling layers by digital ground layers and other shielding features. A router using such a backplane provides a level of performance and economy that is believed to be unattainable by the prior art.
Abstract:
A packet network device includes a route processor that operates to maintain one or more forwarding tables and it includes one or more line cards that operate to process information received by the packet network device from the network and to forward the information to its correct destination. The route processor also operates to identify which incoming prefixes can be used to update the forwarding tables or to identify prefixes stored in the packet network device that can be redistributed from one network protocol to another network protocol running on the route processor. A table management function running on the route processor operates to identify the best match between an incoming prefix and information included in policy statement associated with both an ordered prefix-list and a radix tree structure.
Abstract:
A high-speed router backplane is disclosed. The router backplane uses differential signal pairs on multiple signal layers, each sandwiched between a pair of digital ground layers. Thru- holes are used to connect the differential signal pairs to external components. To reduce routing complexity, at least some of the differential signal pairs route through a via pair, somewhere along their path, to a different signal layer. At least some of the thru-holes and vias are drilled to reduce an electrically conductive stub length portion of the hole. The drilled portion of a hole includes a transition from a first profile to a second profile to reduce radio frequency reflections from the end of the drilled hole.
Abstract:
A high-speed router backplane, and method for its fabrication, are disclosed. The backplane uses differential signaling trace pairs on multiple high-speed signaling layers, the high-speed signaling layers separated by ground planes. Plated signaling thru-holes connect the trace pairs to the board surface for connection to external components. The signaling thru-holes pass through clearances in each ground plane. At selected ground planes, a conductive pad is patterned within each high-speed signaling thru-hole clearance, the pad slightly larger than the thru-hole diameter. The pads affect the impedance characteristics of the thru-holes, thus providing a better impedance match to the differential trace pairs, reducing signal reflections, and improving the ability to signal across the backplane at high speeds.
Abstract:
A packet network device such as a network switch includes a number of functional cards or chassis modules at least some of which are connected to both an electrical backplane and a wireless backplane. The electrical backplane provides data plane signal paths and the wireless backplane provides control plane signal paths.
Abstract:
A modular system uses point-to-point communication between field-programmable gate arrays (FPGAs) on a control module and each port module, respectively, to manage basic module functions, such as power, environmental monitoring, and health checks on the modules and their components. This allows a chassis to be managed without fully powering each card first, frees processors on the modules from having to perform health checks, allows dedicated resources to rapidly monitor the health of each card, and prevents one bad card from disabling management of all cards.
Abstract:
A LAN includes a CORE switch, some number of TOR switches, each linked to the CORE switch, and each of the TOR switches are linked directly to some number of host devices. Each of the switches in the LAN operate to process and transmit data frames they receive from neighboring LAN devices. Each TOR switch in the LAN builds and maintains a layer-2 forwarding table that is comprised of MAC address information learned from frames they receive from neighboring LAN devices. Selected ports/VLAN s on some or all of the TOR devices are designated to be CORE/switch facing ports (CFP) or host facing ports (HFP). Each of the CFPs are configured to only learn the MAC address in unicast frames it receives and each of the HFPs can be configured to learn the MAC address of both unicast and multicast data frames provided the destination MAC address included in the unicast frame is known.