Abstract:
The present invention provides methods and systems for nanowire alignment and deposition. Energizing (e.g., an alternating current electric field) is used to align and associate nanowires with electrodes. By modulating the energizing, the nanowires are coupled to the electrodes such that they remain in place during subsequent wash and drying steps. The invention also provides methods for transferring nanowires from one substrate to another in order to prepare various device substrates. The present invention also provides methods for monitoring and controlling the number of nanowires deposited at a particular electrode pair, as well as methods for manipulating nanowires in solution.
Abstract:
The present invention is directed to methods to harvest, integrate and exploit nanomaterials, and particularly elongated nanowire materials. The invention provides methods for harvesting nanowires that include selectively etching a sacrificial layer placed on a nanowire growth substrate to remove nanowires. The invention also provides methods for integrating nanowires into electronic devices that include placing an outer surface of a cylinder in contact with a fluid suspension of nanowires and rolling the nanowire coated cylinder to deposit nanowires onto a surface. Methods are also provided to deposit nanowires using an ink-jet printer or an aperture to align nanowires. Additional aspects of the invention provide methods for preventing gate shorts in nanowire based transistors. Additional methods for harvesting and integrating nanowires are provided.
Abstract:
The present invention is directed to methods to produce, process, and exploit nanomaterials, and particularly elongated nanowire materials. The invention provides a method for producing nanowires that includes providing a thin film of a catalyst material with varying thickness on a substrate, heating the substrate and thin film, such that the thin film disassociates at the relatively thinner regions and vapor depositing a semiconductor onto the substrate to produce nanowires. A method is also provided in which two or more thin films of different materials are overlayed over a substrate, selectively etching the first underlying thin film to create a plurality of islands of the second thin film that mask portions of the first thin film and expose other portions and growing nanowires on the first thin film. Additional methods for producing nanowires are provided.
Abstract:
A controller (16) for controlling a damping system (12) is disclosed. The system (12) has at least two dampers (12a-12d) for damping between sprung and unsprung masses (7, 2) in at least one of compression and rebound directions. A sensor (190a-190d) generates position signals (17a-17d) representative of the displacement between the sprung and unsprung masses (7, 2). A regulator (40a-40b) responds to at least one of the independent compression and rebound control signals (25a-25d, 27a-27d) for adjusting, respectively, at least one of compression and rebound resisting forces of the dampers (12a-12d) between the masses (2, 7). The controller (16) includes a processor (15) that is responsive to signals representative of the position signals (17a-17d) for forming the compression and rebound control signals (25a-25d, 27a-27d) for the regulator (40a, 40b) as a function of motion between the masses (2, 7) or a motion of a vehicle (8) in which the dampers (12a-12d) are located.
Abstract:
The present invention is directed to methods to harvest, integrate and exploit nanomaterials, and particularly elongated nanowire materials. The invention provides methods for harvesting nanowires that include selectively etching a sacrificial layer placed on a nanowire growth substrate to remove nanowires. The invention also provides methods for integrating nanowires into electronic devices that include placing an outer surface of a cylinder in contact with a fluid suspension of nanowires and rolling the nanowire coated cylinder to deposit nanowires onto a surface. Methods are also provided to deposit nanowires using an ink-jet printer or an aperture to align nanowires. Additional aspects of the invention provide methods for preventing gate shorts in nanowire based transistors. Additional methods for harvesting and integrating nanowires are provided.
Abstract:
Methods, systems, and apparatuses for nanowire deposition are provided. A deposition system includes an enclosed flow channel, an inlet port, and an electrical signal source. The inlet port provides a suspension that includes nanowires into the channel. The electrical signal source is coupled to an electrode pair in the channel to generate an electric field to associate at least one nanowire from the suspension with the electrode pair. The deposition system may include various further features, including being configured to receive multiple solution types, having various electrode geometries, having a rotatable flow channel, having additional electrical conductors, and further aspects.
Abstract:
The present invention provides methods and systems for nanowire alignment and deposition. Energizing (e.g., an alternating current electric field) is used to align and associate nanowires with electrodes. By modulating the energizing, the nanowires are coupled to the electrodes such that they remain in place during subsequent wash and drying steps. The invention also provides methods for transferring nanowires from one substrate to another in order to prepare various device substrates. The present invention also provides methods for monitoring and controlling the number of nanowires deposited at a particular electrode pair, as well as methods for manipulating nanowires in solution.