Abstract:
The invention relates to measurement of chemical spillage, such as oil spillage, by the use of one or more IR-lasers, necessary optics and optical sensors. The measurements are performed by reflecting the emitted light from the laser(s) back from the chemical and registered by optical sensors. To accurately detecting the chemical the system utilizes at least three different wavelengths which are emitted from one or more lasers. The wavelengths are chosen so that the reflection from the chemical is different for at least three of these, and that it can be distinguished from the background.
Abstract:
The invention relates to measurement of chemical spillage, such as oil spillage, by the use of one or more IR-lasers, necessary optics and optical sensors. The measurements are performed by reflecting the emitted light from the laser(s) back from the chemical and registered by optical sensors. To accurately detecting the chemical the system utilizes at least three different wavelengths which are emitted from one or more lasers. The wavelengths are chosen so that the reflection from the chemical is different for at least three of these, and that it can be distinguished from the background.
Abstract:
A method is shown for the analysis of hydrocarbon based fuels comprising the following steps: a) the use of a tunable diode laser (TDL) whereby several wavelengths of light can be emitted, b). transmission of said light through a transparent flow cell or flow chamber containing the fuel, c). measurement of the transmitted light with an optical detector positioned on the opposite site of the cell/chamber, d). detection of signals and storage on a computer memory, e). computer-based analysis of measurements, f). use of an algorithm and a chemical reference library for subsequent quantitative analysis of the hydrocarbon compounds.
Abstract:
The subject invention relates to a new alarm which is based on using a quarternary tunable Mid-IR laser to measure both particles and gas at the same time. The measurement is done within an area of which the gas of interest will absorb the Mid-IR radiation. By widely tuning the emission wavelength of the laser, several wavelengths can be measured in order to accurately find both gas composition and particle density with one laser based sensor. We tested a new device which use radiation between 2.27 mum and 2.316 mum. Methane gas reduces intensity of the radiation at certain wavelengths in this device, while particles/fog reduce intensity for all wavelengths. In this case, fog should not trigger an alarm, while methane leaks should. This can also be applied for CO and smoke in which one sensor will measure both parameters to sound an alarm instead of just one parameter.
Abstract:
The present invention relates to a method for manufacturing semiconductor materials comprising epitaxial growing of group III-V materials, for example gallium arsenide (GaAs), on for example a non III-V group material like silicon (Si) substrates (wafers), and especially to pre-processing steps providing a location stabilization of dislocation faults in a surface layer of the non III-V material wafer in an orientation relative to an epitaxial material growing direction during growing of the III-V materials, wherein the location stabilized dislocation fault orientations provides a barrier against threading dislocations (stacking of faults) from being formed in the growing direction of the III-V materials during the epitaxial growth process.