Abstract:
A method of manufacturing a dielectric for a capacitor and a dielectric for a capacitor manufactured thereby are provided. A dielectric for a capacitor is prepared by calcining a precursor mixture containing lead, lanthanum, zirconium, and titanium to produce calcined powder, adding additives including sodium, potassium, and the like to the powder, and sintering the mixture at a low temperature, whereby the dielectric has a high density and a large dielectric constant.
Abstract:
A self-powered delineator includes a wind-powered rotatable module; a first piezoelectric energy generator module for generating electrical energy; a second piezoelectric energy generator module for generating electrical energy; and a light-emitter. The wind-powered rotatable module includes one or more first magnets spacedly arranged around a rotation shaft. The first piezoelectric energy generator module includes one or more first piezoelectric elements, and one or more second magnets disposed on the at least one first piezoelectric element. The second piezoelectric energy generator module includes at least one elastic base extending radially from a fixed shaft in a cantilever manner; and at least one second piezoelectric element on the at least one elastic base.
Abstract:
The present invention relates to a lithium-sulfur ultracapacitor including a cathode containing a sulfur-porous carbon composite material; a separator; a lithium metal electrode disposed on an opposite side of the cathode with respect to the separator; a graphite-based electrode disposed adjacent to the lithium metal electrode; and an electrolyte impregnating the cathode, the lithium metal electrode, and the graphite-based electrode, wherein the lithium metal electrode and the graphite-based electrode together constitute an anode, and a method of preparing the lithium-sulfur ultracapacitor. According to the present invention, since the lithium metal electrode and the graphite-based electrode are adjacent to each other, lithium ions arising from the lithium metal electrode are pre-doped on the graphite-based electrode due to an internal short circuit between the lithium metal electrode and the graphite-based electrode, migrate from the graphite-based electrode to the cathode during a discharging process, and migrate from the cathode to the graphite-based electrode during a charging process, and such migrations contribute to excellent charging and discharging properties of the lithium-sulfur ultracapacitor.
Abstract:
The present invention relates to a method for preparing a two-dimensional hybrid composite that is capable of solving the problems with the two-dimensional plate type materials, that is, step difference, defects, stretching, etc., that occur as the second-dimensional plate type materials overlap with one another. The present invention provides a method for preparing a two-dimensional hybrid composite that includes: (a) preparing a first plate type material in the solid or liquid state; (b) mixing a second plate type material with the first plate type material, the second plate type material being thinner and more flexible than the first plate type material; (c) mixing a solid or liquid binder with the first and second plate type materials to make the first and second plate type materials partly contact with or apart from each other; and (d) solidifying a composite formed by the steps (a), (b) and (c).
Abstract:
Disclosed are a graphene-ceramic hybrid coating layer formed from a graphene-ceramic hybrid sol solution including graphene (RGO: reduced graphene oxide) and a ceramic sol, wherein the graphene content in the graphene-ceramic hybrid coating layer is about 0.001 wt % to about 1.8 wt % based on the total weight of the graphene-ceramic hybrid coating layer, and a method for preparing the same.
Abstract:
A method for preparing graphene nanoplate (GNP) is provided and includes preparing expanded graphite (EG) and exfoliating, grinding, or cracking the expanded graphite to crack the EG induced by gas-phase-collision. A graphene nanoplate paste and a conductive coating layer formed of the graphene nanoplate paste are provided and are prepared by the method for preparing graphene nanoplate.
Abstract:
The present invention relates to a powder for growing a gallium oxide single crystal and a method of manufacturing the same, and the powder for growing a gallium oxide single crystal according to an embodiment of the present invention is made of gallium oxide and has a bulk density of 0.7 g/cm3 or more and 1.0 g/cm3 or less.
Abstract:
The present invention provides a plasma-resistant ceramic substrate including a bulk of an oxide composition; and a surface layer in which an oxide composition component constituting the bulk was modified to a composition including one or more anions selected from the group consisting of F− and Cl−, wherein the surface layer is a layer in which a raw material containing one or more anions selected from the group consisting of F− and Cl− is vaporized by heating and adsorbed on the surface of the ceramic substrate to be modified to a composition including one or more anions selected from the group consisting of F− and Cl−, and a method of manufacturing the same. According to the present invention, the plasma resistance and durability of the ceramic substrate can be improved at low cost.
Abstract:
A device for producing nanoparticles includes: a first connector comprising a first supply tube fitting member, a second supply tube fitting member, and a first discharge tube fitting member; a first tube having one side connected to the first supply tube fitting member; a second tube having one side connected to the second supply tube fitting member; a first conduit having one side connected to the first discharge tube fitting member; a first supply connected to another side of the first tube to supply a first material to the first conduit; and a second supply connected to another side of the second tube to supply a second material to the first conduit.
Abstract:
A method of manufacturing a ceramic dielectric, including: heat-treating a barium precursor or a strontium precursor, a titanium precursor, and a donor element precursor to obtain a conducting or semiconducting oxide, preparing a mixture including the conducting or semiconducting oxide and a liquid-phase acceptor element precursor, and sintering the mixture to form a ceramic dielectric, wherein the ceramic dielectric includes a plurality of grains and a grain boundary between adjacent grains, and wherein the plurality of grains including an insulating oxide comprising an acceptor element derived from the acceptor element precursor.