Abstract:
強誘電体メモリおよび強誘電体メモリを動作させる方法が開示される。強誘電体メモリは、最大残留電荷Q max によって特徴付けられる強誘電体キャパシタを有する強誘電体メモリセルを含む。書き込み回路は、強誘電体キャパシタに保存するための3つ以上の状態を有するデータ値を受信する。書き込み回路は、強誘電体キャパシタのQ max を測定し、強誘電体キャパシタに保存される、測定されたQ max の分数である電荷を決定し、分数は、データ値によって決定される。書き込み回路は、Q max の分数倍に等しい電荷を強誘電体キャパシタに保存させる。読み出し回路は、強誘電体キャパシタに保存された電荷を測定し、強誘電体キャパシタのQ max を測定し、かつ測定された電荷および測定されたQ max からデータ値を決定することにより、強誘電体キャパシタに保存された値を決定する。 【選択図】図4
Abstract:
A memory cell and memories constructed from that memory cell are disclosed. A memory according to the present invention includes a ferroelectric capacitor, a charge source and a read circuit. The charge source receives a data value to be stored in the ferroelectric capacitor. The charge source converts the data value to a remanent charge to be stored in the ferroelectric capacitor and causes that remanent charge to be stored in the ferroelectric capacitor. The read circuit determines a charge stored in the ferroelectric capacitor. The data value has more than three distinct possible states, and the determined charge has more than three determined values. The memory also includes a reset circuit that causes the ferroelectric capacitor to enter a predetermined known reference state of polarization.
Abstract:
A memory cell and memories constructed from that memory cell are disclosed. A memory according to the present invention includes a ferroelectric capacitor, a charge source and a read circuit. The charge source receives a data value to be stored in the ferroelectric capacitor. The charge source converts the data value to a remanent charge to be stored in the ferroelectric capacitor and causes that remanent charge to be stored in the ferroelectric capacitor. The read circuit determines a charge stored in the ferroelectric capacitor. The data value has more than three distinct possible states, and the determined charge has more than three determined values. The memory also includes a reset circuit that causes the ferroelectric capacitor to enter a predetermined known reference state of polarization.
Abstract:
A memory cell comprising a ferroelectric capacitor, a variable impedance element and a conductive load is disclosed. The ferroelectric capacitor, characterized by first and second polarization states, is connected between a control terminal and a first switch terminal. The variable impedance element has an impedance between the first and second switch terminals that is determined by a signal on a control terminal. The conductive load is connected between a first power terminal and the first switch terminal. The second switch terminal is connected to a second power terminal. When a potential difference is applied between the first and second power terminals, a potential on the first switch terminal varies in a manner determined by the state of polarization of the ferroelectric capacitor.
Abstract:
A method and an apparatus for estimating a location of a terminal are provided. The method includes: receiving at least one base station signal from each of at least one base station; computing received signal information with respect to the received signal; and estimating the location of the terminal based on signal transmission direction information associated with the base station and the computed received signal information. The present invention can accurately estimate the location of the terminal based on directional information of base station signals.
Abstract:
A method for fabricating an integrated circuit having at least one integrated circuit component (14) fabricated in a silicon substrate (12) and a second device (30) that is to be fabricated on a silicon oxide layer (16) that covers the integrated circuit component (14). The integrated circuit component (14) has a terminal that is to be connected to a corresponding terminal on the second device (30). The second device (30) includes an electrode structure (35) in contact with a dielectric component that includes a layer (33) of ferroelectric material. In the method of the present invention, a boundary layer comprising non-conducting polysilicon (17) is deposited over the silicon oxide layer (16). The electrode structure (35) is then fabricated by depositing one or more layers over the boundary layer (17). The ferroelectric layer (33) is then deposited over the electrode structure (35) and etched to provide the dielectric component. The boundary layer is then removed utilizing an etchant that etches silicon oxide much slower than polysilicon.
Abstract:
A method for connecting a silicon substrate to an electrical component via a platinum conductor. A capacitor (40) can be built over the source (34) of a transistor (32). Cell (30) is constructed by first constructing a CMOS transistor (32) having a drain (33), gate region consisting of gate oxide (35) and gate electrode (36), and source (34). The gate structures are insulated with a glass layer (37). A capacitor (40) is then constructed by depositing a bottom electrode (42) on source (34). A ceramic layer (43) is then deposited and sintered. Finally, the top electrode (41) is deposited. The resulting structure may be heated in the presence of oxygen to a temperature in excess of 800 DEG C without destroying the electrical connection between the silicon substrate and components connected to the platinum conductor. The present invention utilizes a TiN or TiW buffer layer to connect the platinum conductor to the silicon substrate. The buffer layer is deposited as a single crystal on the silicon substrate. The platinum layer is then deposited on the buffer layer. The region of the platinum layer in contact with the buffer layer is also a single crystal.
Abstract:
A ferroelectric memory cell for storing information. The information is stored in the remnant polarization of a ferroelectric dielectric layer by setting the direction of the remnant polarization. The ferroelectric memory cell is designed to store the information at a temperature less than a first temperature. The memory cell includes top and bottom contacts that sandwich the dielectric layer which includes a ferroelectric material having a Curie point greater than the first temperature and less than 400 DEG C. The dielectric layer is encapsulated in an oxygen impermeable material such that the encapsulating layer prevents oxygen from entering or leaving the dielectric layer. The memory also includes a hydrogen barrier layer that inhibits the flow of oxygen to the top and bottom electrodes when the memory cell is placed in a gaseous environment containing hydrogen. In one embodiment of the invention, a hydrogen absorbing layer is included. In the preferred embodiment of the present invention, the hydrogen barrier layer is constructed from a material that will also bind hydrogen ions.