Abstract:
Systems and methods for stabilizing the gain of a gamma-ray spectroscopy system are provided. In accordance with one embodiment, a method of stabilizing the gain of a gamma-ray spectroscopy system may include generating light corresponding to gamma-rays detected from a geological formation using a scintillator having a natural radioactivity, generating an electrical signal corresponding to the light, and stabilizing the gain of the electrical signal based on the natural radioactivity of the scintillator. The scintillator may contain, for example, naturally radioactive elements such as Lutetium or Lanthanum.
Abstract:
Systems and methods for stabilizing the gain of a gamma-ray spectroscopy system are provided. In accordance with one embodiment, a method of stabilizing the gain of a gamma-ray spectroscopy system may include generating light corresponding to gamma-rays detected from a geological formation using a scintillator having a natural radioactivity, generating an electrical signal corresponding to the light, and stabilizing the gain of the electrical signal based on the natural radioactivity of the scintillator. The scintillator may contain, for example, naturally radioactive elements such as Lutetium or Lanthanum.
Abstract:
An antenna (3) of an electromagnetic probe (1) used in investigation of geological formations GF surrounding a borehole WBH comprises a conductive base (31) and a first antenna element (32). The conductive base (31) comprises an opened non- resonant cavity (33). The first antenna element (32) is embedded in the cavity (33) and goes right trough the cavity. The first antenna element (32) is comprised of a center-split half-coaxial wire so as to define a symmetrized antenna radiation pattern.
Abstract:
Systems, methods, and devices relating to a sourceless X-ray downhole tool are provided. By way of example, such a downhole tool may include an X-ray generator, an X-ray detector, and data processing circuitry. The X-ray generator may emit some X-rays out of the downhole tool and some X-rays internally through the downhole tool. The X-ray detector may detect some of the X-rays that return to the downhole tool, as well as some of the X-rays that pass internally through the downhole tool. The data processing circuitry may gain-stabilize the X-ray detector based at least in part on the X-rays that passed internally through the downhole tool and were detected by the X-ray detector.
Abstract:
An antenna (3) of an electromagnetic probe used in investigation of geological formations GF surrounding a borehole WBH comprises a conductive base (31) and an antenna element (32). The conductive base (31) comprises an opened non-resonant cavity (33). The antenna element (32) is embedded in the cavity (33) and goes right through the cavity. The antenna element (32) is isolated from the conductive base (31). The antenna element (32) is coupled to at least one electronic module via a first 34A and a second 34B port, respectively. The electronic module operates the antenna so as to define a simultaneously superposed pure magnetic dipole and pure electric dipole.
Abstract:
An antenna 3 of an electromagnetic probe used in investigation of geological formations GF surrounding a borehole WBH comprises a conductive base 31 and an antenna element 32. The conductive base 31 comprises an opened non-resonant cavity 33. The antenna element 32 is embedded in the cavity 33 and goes right through the cavity. The antenna element 32 is isolated from the conductive base 31. The antenna element 32 is coupled to at least one electronic module via a first 34A and a second 34B port, respectively. The electronic module operates the antenna so as to define either a substantially pure magnetic dipole, or a substantially pure electric dipole.
Abstract:
An electromagnetic probe 1 measures the electromagnetic properties of a subsurface formation GF in a limited zone surrounding a well-bore hole WBH. The well-bore hole is filled with a well-bore fluid DM. The probe comprises a pad 2 having a first face defining a first area arranged to be positioned in contact with a well-bore wall WBW. The probe 1 further comprises: at least two transmitting antennas 4A, 4B defining a central point CP between them, each antenna being spaced from a distance do from the central point, and at least a first 5A, 5B and a second set 5C, 5D of receiving antennas, each set comprising a first receiving antenna 5A; 5C and a second receiving antenna 5B; 5D, the first receiving antenna being positioned on one side of the transmitting antennas and the second receiving antenna being positioned on other side of the transmitting antennas so that each set encompass the transmitting antennas 4A, 4B.
Abstract:
A well-logging tool may include a sonde housing and a radiation generator carried by the sonde housing. The radiation generator may include a generator housing, a target carried by the generator housing, a charged particle source carried by the generator housing to direct charged particles at the target, and at least one voltage source coupled to the charged particle source. The at least one voltage source may include a voltage ladder comprising a plurality of voltage multiplication stages coupled in a uni-polar configuration, and at least one loading coil coupled at at least one intermediate position along the voltage ladder. The well-logging tool may further include at least one radiation detector carried by the sonde housing.
Abstract:
A well logging instrument includes an instrument housing to traverse a wellbore penetrating subsurface formations. An electrically operated energy source that emits ionizing radiation is disposed inside the housing. An insulating sleeve is disposed between the energy source and an interior wall of the housing. The insulating sleeve comprises a thin dielectric film arranged in a plurality of tightly fitting layers of dielectric material disposed adjacent to each other and successively. A thickness of each layer and a number of layers is selected to provide a dielectric strength sufficient to electrically insulate the energy source from the housing and to provide a selected resistance to dielectric failure resulting from the ionizing radiation.
Abstract:
Logging-while-drilling tools incorporating an electronic radiation generator, such as an electronic X-ray generator, and a method for using the same are provided. One example of such a logging-while-drilling tool may include a circumferential drill collar, a chassis disposed radially interior to the drill collar, and an electronic X-ray generator and an X-ray detector disposed within the chassis. The electronic X-ray generator may emit X-rays out of the logging-while-drilling tool into a subterranean formation. The X-ray detector may detect X-rays that return to the logging-while-drilling tool after scattering in the subterranean formation, which may be used to determine a density and/or a lithology of the subterranean formation.