Abstract:
A method for removing nuclei formed during a selective epitaxial growth process includes epitaxially growing a first group of one or more semiconductor structures over a substrate with one or more mask layers. A second group of a plurality of semiconductor structures is formed on the one or more mask layers. The method also includes forming one or more protective layers over the first group of one or more semiconductor structures. At least a subset of the second group of the plurality of semiconductor structures is exposed from the one or more protective layers. The method further includes, subsequent to forming the one or more protective layers over the first group of one or more semiconductor structures, etching at least the subset of the second group of the plurality of semiconductor structures.
Abstract:
A method for removing nuclei formed during a selective epitaxial growth process includes epitaxially growing a first group of one or more semiconductor structures over a substrate with one or more mask layers. A second group of a plurality of semiconductor structures is formed on the one or more mask layers. The method also includes forming one or more protective layers over the first group of one or more semiconductor structures. At least a subset of the second group of the plurality of semiconductor structures is exposed from the one or more protective layers. The method further includes, subsequent to forming the one or more protective layers over the first group of one or more semiconductor structures, etching at least the subset of the second group of the plurality of semiconductor structures.
Abstract:
A device for sensing light includes a first semiconductor region doped with a dopant of a first type and a second semiconductor region doped with a dopant of a second type. The second semiconductor region is positioned above the first semiconductor region. The device includes a gate insulation layer; a gate, a source, and a drain. The second semiconductor region has a top surface that is positioned toward the gate insulation layer and a bottom surface that is positioned opposite to the top surface of the second semiconductor region. The second semiconductor region has an upper portion that includes the top surface of the second semiconductor region and a lower portion that includes the bottom surface of the second semiconductor region and is mutually exclusive with the upper portion. The first semiconductor region is in contact with both the upper portion and the lower portion of the second semiconductor region.
Abstract:
A method for obtaining a semiconductor island includes epitaxially growing a semiconductor structure over a substrate with a mask layer defining a region not covered by the mask layer. The semiconductor structure includes a first portion located adjacent to the mask layer and a second portion located away from the mask layer. The first portion has a first height that is less than a second height of a portion of the mask layer located adjacent to the first portion. The second portion has a third height that is equal to, or greater than, the second height. The method also includes forming a filling layer over at least the first portion; and, subsequently removing at least a portion of the semiconductor structure that is located above the second height. Devices made by this method are also disclosed.
Abstract:
Se propone un método implementado por ordenador y un sistema electrónico para la gestión y el acceso a datos de una manera optimizada. La solución propuesta permite ofrecer una capa de datos, independiente del modelo físico de los datos, mediante una definición de negocio y semántica en base a ontologías. Una vez creada esta capa de datos, toda gestión y acceso al dato se realiza en base a dicha capa, lo que permite el acceso al dato en base a una definición de negocio, desacoplando todos los procesos/sistemas que explotan los datos de los modelos físicos de datos, y haciéndolos portables en diferentes escenarios.
Abstract:
A device for sensing light includes a first semiconductor region doped with a dopant of a first type and a second semiconductor region doped with a dopant of a second type. The second semiconductor region is positioned above the first semiconductor region. The device includes a gate insulation layer; a gate, a source, and a drain. The second semiconductor region has a top surface that is positioned toward the gate insulation layer and a bottom surface that is positioned opposite to the top surface of the second semiconductor region. The second semiconductor region has an upper portion that includes the top surface of the second semiconductor region and a lower portion that includes the bottom surface of the second semiconductor region and is mutually exclusive with the upper portion. The first semiconductor region is in contact with both the upper portion and the lower portion of the second semiconductor region.
Abstract:
A device for sensing light includes a first semiconductor region doped with a dopant of a first type and a second semiconductor region doped with a dopant of a second type. The second semiconductor region is positioned above the first semiconductor region. The device includes a gate insulation layer; a gate, a source, and a drain. The second semiconductor region has a top surface that is positioned toward the gate insulation layer and a bottom surface that is positioned opposite to the top surface of the second semiconductor region. The second semiconductor region has an upper portion that includes the top surface of the second semiconductor region and a lower portion that includes the bottom surface of the second semiconductor region and is mutually exclusive with the upper portion. The first semiconductor region is in contact with both the upper portion and the lower portion of the second semiconductor region.
Abstract:
A method for obtaining a semiconductor island includes epitaxially growing a semiconductor structure over a substrate with a mask layer defining a region not covered by the mask layer. The semiconductor structure includes a first portion located adjacent to the mask layer and a second portion located away from the mask layer. The first portion has a first height that is less than a second height of a portion of the mask layer located adjacent to the first portion. The second portion has a third height that is equal to, or greater than the second height. The method also includes forming a filling layer over at least the first portion; and, subsequently removing at least a portion of the semiconductor structure that is located above the second height. Devices made by this method are also disclosed.