Abstract:
A fluid treatment system (100) for placement in a flanged pipe fluid conveyance system. The fluid treatment system (100) comprises a flanged ductile iron pipe fitting (105). The ductile iron pipe fitting (105) comprises: a first flanged opening (110) and a second flanged opening (120) in substantial alignment to define a flow axis aligned substantially parallel to a direction of fluid flow (A) through the first opening (110) and the second opening (120); and a third flanged opening (130) comprising a first cover element (155). The first cover element (155) has connected thereto at least one radiation source (150) assembly comprising at least one elongate radiation source having a longitudinal axis substantially transverse to the flow axis. In its preferred form, the fluid treatment system may be advantageously utilized to treat fluid such as water, e.g., municipal waste water, municipal drinking water and the like. The fluid treatment system is particularly advantageous since it utilizes a standard ductile iron pipe fitting (105) and thus, can be readily "spliced" into existing piping systems. This facilitates installation of the system and also allows for a significant lowering of manufacturing costs of the system.
Abstract:
A fluid treatment device comprising a housing for receiving a flow of fluid, the housing comprising a fluid inlet, a fluid outlet, a fluid treatment zone disposed between the fluid inlet and the fluid outlet, and at least one radiation source module disposed in the fluid treatment zone, the at least one radiation source module comprising a radiation source sealably connected to a leg, the leg sealably mounted to the housing, the radiation source being disposed substantially parallel to the flow of fluid. A method of treating a fluid in a housing comprising a fluid inlet, a fluid outlet, a fluid treatment zone disposed between the fluid inlet and the fluid outlet, the fluid treatment zone having at least one radiation source disposed therein is also described. The method comprises the steps of: (i) providing a flow of the fluid to the fluid inlet; (ii) feeding the flow of fluid from the fluid inlet to the fluid treatment zone in a manner substantially parallel to the at least one radiation source; (iii) irradiating the flow of fluid in the fluid treatment zone; and (iv) feeding the flow of fluid to the fluid outlet. During the method, the flow of fluid through the fluid inlet, the fluid outlet and the fluid treatment zone is substantially collinear. The fluid treatment device and method are ideally suited (but not limited) to inactivate microorganisms present in water.
Abstract:
A process for treating a fluid comprising at least one chemical contaminant. The process comprises the steps of: (i) contacting the fluid with a particulate adsorbent material; (ii) allowing the adsorbent material to adsorb the chemical contaminant to produce a substantially purified fluid and a contaminant-carrying adsorbent material; (iii) separating the contaminant-carrying adsorbent material from the substantially purified fluid; (iv) contacting the contaminant-carrying adsorbent material with an aqueous slurry of a photocatalytic metal oxide powder in the presence of an electron acceptor and electromagnetic radiation in at least one of ultraviolet and visible regions; (v) allowing the contaminant to decompose to form a product which dissociates from the contaminant-carrying adsorbent to provide a regenerated adsorbent material, the aqueous slurry and the product; (vi) separating and recycling the regenerated adsorbent material to step (i); and (vii) recycling the aqueous slurry to step (iv). The process may be used to remove contaminants from and thereby purify fluids such as water, off-gases from air stripping processes and chimney gases.
Abstract:
A radiation source assembly comprises a source base, a UV transparent sleeve, and a UV lamp. The source base comprises a sealed electrical connection interface and an opposing sealed sleeve interface. The sealed electrical connection interface comprises a electrical contacts and the sealed sleeve interface comprise a radial sealing element, an outer collar, and a compression ring. The UV transparent sleeve is engaged with the sleeve interface such that the radial sealing element of the sealed sleeve interface is disposed between the UV transparent sleeve and the outer collar of the source base, and the compression ring is positioned over the UV transparent sleeve and engaged with the source base to compress the radial sealing element onto the UV transparent sleeve and the outer collar. The UV lamp is disposed within the UV transparent sleeve and electrically coupled to the electrical contacts of the electrical connection interface.
Abstract:
A fluid treatment system for treating a fluid with ultraviolet light. The system includes a detachable light source assembly having a thermally conductive outer wall, an inner wall disposed inside the outer wall and surrounding an inner space within the inner wall that defines a treatment zone, and an ultraviolet light source disposed between the outer wall and the inner wall and configured to emit ultraviolet light toward the treatment zone, and a reactor vessel having an inlet port for receiving a fluid and an outlet port for expelling treated fluid, the reactor vessel configured to receive the light source assembly in an attached state such that a space between a wall of the reactor vessel and the outer wall of the light source assembly defines a cooling zone in which the outer wall is cooled by contacting the fluid.
Abstract:
An embodiment provides method for controlling lamp output within an array of lamps, including: receiving sensor data corresponding to one of a plurality of lamps within the array, wherein the sensor data comprises an irradiance value from at least one of: within a lamp sleeve and an irradiance value from outside a lamp sleeve; identifying, based the sensor data, a change in an output of the one of the plurality of lamps; sharing the sensor data with other of the plurality of lamps within the array; and adjusting, in response to the sharing, an output of at least one of the other of the plurality of lamps within the array, thereby compensating for the change in the output of one of the plurality of lamps. Other aspects are described and claimed.
Abstract:
A radiation source assembly is provided. The radiation source assembly includes (a) a radiation source element, and (b) a wavelength conversion element, wherein (a) and (b) are in spaced relation and reversibly engageable with respect to one another. A radiation source assembly is also provided that includes: (a) a radiation source element, and (b) a wavelength conversion element, wherein (a) and (b) are in spaced relation and configured to be disengageable with respect to one another.
Abstract:
There is described an on-line device for controlling a fluid treatment process configured to inactivate a microorganism in a flow of fluid using ultraviolet radiation and a chemical disinfectant. The device comprises: a memory for receiving a calculated database of dose response for the ultraviolet radiation and for the chemical disinfectant for a fluid treatment parameter; means to obtain input data about the fluid treatment parameter from the process; means to compare the input data with calculated database; and means to adjust one or more of the amount ultraviolet radiation and the chemical disinfectant added to the flow fluid in response to a difference between the input data and calculated database. There is also described a process for controlling a fluid treatment process configured to inactivate a microorganism in a flow of fluid using ultraviolet radiation and a chemical disinfectant.
Abstract:
Described is a baffle comprising a continuous outer edge and an interior portion enclosed by the outer edge and connected to the outer edge. The interior portion comprises one or more teeth each having a tip directed towards the centre of the baffle, a base adjacent to the outer edge, and a tooth edge joining the tip to the base, wherein at least a portion of the tooth edge defines at least a portion of an aperture extending from a first face to a second face of the baffle.
Abstract:
The is described a process for determining a validated Reduction Equivalent Dose for reducing the concentration of a target contaminant contained in a fluid in a radiation fluid treatment system. In one embodiment, the process comprises the steps of: (a) determining a short wavelength Reduction Equivalent Dose for the target contaminant or a challenge contaminant in a first region of the electromagnetic spectrum having a wavelength of less than or equal to about 240 nm; (b) determining a long wavelength Reduction Equivalent Dose for the target contaminant or a challenge contaminant in a second region of the electromagnetic spectrum having a wavelength of greater than about 240 nm; and (c) summing the short wavelength Reduction Equivalent Dose and the long wavelength Reduction Equivalent Dose to produce the validated Reduction Equivalent Dose for the target contaminant. In a preferred embodiment, the present invention provides a useful approach for determining the relevant Reduction Equivalent Dose (RED) for Cryptosporidium disinfection and accomplishes this by using the discovered relation between the short wavelength sensor signal and the short wavelength RED, and subtracting the short wavelength RED from the RED determined using a challenge microbe with synthetic lamp sleeves, to obtain the long wavelength RED applicable to Cryptosporidium disinfection. In a bioassay, one would only need the short wavelength sensor reading and the challenge microbe RED using synthetic lamp sleeves to determine the applicable RED, once the relationship between the short wavelength sensor reading and the short wavelength RED was established.