Abstract:
The invention relates to an apparatus for processing of a liquid by means of radiation; comprising a radiation chamber with a receptacle, comprising an outer wall and two end walls; with a plurality of enveloping tubes, which are enclosed by the outer wall of the receptacle, arranged parallel to each other, and which are housing the radiation sources; the enveloping tubes are journalled in the end walls, and are provided with fixation and sealing devices, fixedly connected to the respective end wall and sealed against the same. Some of the enveloping tubes are journalled in one of the said two end walls, and some of the enveloping tubes are journalled in the other one of the end walls.
Abstract:
There is described an optical radiation sensor device for detecting radiation in a radiation field. The device comprises a sensor element capable of detecting and responding to incident radiation from the radiation field and a radiation window interposed between the sensor element and the radiation field. The radiation window comprises a non-circular (preferably square) shaped radiation transparent opening. The optical radiation sensor device can be used in a so-called dynamic manner while mitigating or obviating the detection errors resulting from the use of a circular-shaped attenuating aperture and/or angular (even minor) misalignment of the sensor device with respect to the array of radiation sources when multiple such circular-shaped attenuating apertures are used.
Abstract:
The invention relates to radiation source assembly (100) including a novel arrangement for protecting at least a portion of an optical radiation sensor (115) from damage due to thermal build-up from the radiation being sensed while allowing the optical radiation sensor (115) to function in a substantially normal manner. Generally, in the present arrangement, damaging radiation from the radiation field in which the sensor is disposed is substantially prevented from contacting the sensor. This may be achieved in a number of different ways.
Abstract:
The object of the invention is a double-walled chamber for the UV disinfection of liquids, preferably drinking water and/or waste water. It realizes a rectangular and/or square cross-sectional shape of the UV radiation chamber even at higher pressures, whereby the radiation chamber can moreover be provided with a thin-walled configuration and allows an optimal and close arrangement of UV radiators as compared with a round chamber. By applying the inventive idea, the known dead zones at the entrance are completely eliminated and an entrance turbulence is produced which runs simultaneously with the piston flow in the chamber.
Abstract:
A fluid treatment device, preferably for the treatment of water, is described. The device comprises a closed housing having a fluid inlet, a fluid outlet and a fluid treatment zone disposed between the fluid inlet and the fluid outlet. The fluid treatment zone comprises a first irradiation zone and a second irradiation zone. At least one fluid mixing element is interposed between the first irradiation zone and the second irradiation zone.
Abstract:
There is described a novel fluid level control system, particularly useful for controlling the level of water flowing in an open channel. The fluid level control system comprises a gate having a flap portion (3) interconnected to a lever portion (5). The flap portion is rotatable about a first pivot point (8) and comprises a first weight. The system further comprises a frame (1) which is fixed with respect to the flap portion. A linkage (11, 12, 13) interconnects the flap portion and the lever portion, and is connected to the frame at a second pivot point (10) different than the first pivot point (8). Under changing flow conditions in the channel, the present system operates by both : absolute movement of the lever portion and the flap portion, and (ii) relative movement between the lever portion and the flap portion. A fluid treatment system comprising the fluid level control system and a method for controlling the level of a flowing fluid are also described.
Abstract:
There is described an excimer radiation lamp assembly. The lamp assembly comprise a radiation emitting region and at least one substantially radiation opaque region. The radiation emitting region comprises a pair of dielectric elements disposed in a substantially coaxial arrangement.
Abstract:
The invention relates to an ultraviolet radiation lamp. The lamp comprises a substantially sealed cavity comprising a mercury-containing material; a filament disposed in the sealed cavity; and an electrical control element in contact with the filament, the electrical control element configured to adjust or maintain a temperature of the mercury-containing material with respect to a prescribed temperature. Such a constructions allows the present ultraviolet radiation lamp to be operated at optimal efficiency without the need to use additional components to add heat to and/or remove heat from the mercury-containing material.
Abstract:
There is disclosed a process for measuring transmittance of a fluid in a radiation field comprising polychromatic radiation - i.e., radiation at a first wavelength and radiation at a second wavelength different from the first wavelength. The process comprises the steps of: (i) positioning a polychromatic radiation source and a polychromatic radiation sensor element in a spaced relationship to define a first thickness of fluid in the radiation field; (ii) detecting a first . radiation intensity corresponding to radiation at the first wavelength received by the sensor element at the first thickness; (iii) detecting a second radiation intensity corresponding to radiation at the second wavelength received by the sensor element at the first thickness; (iv) altering the first thickness to define a second thickness; (v) detecting a third radiation intensity corresponding to radiation at the first wavelength received by the sensor element at the second thickness; (vi) detecting a fourth radiation intensity corresponding to radiation at the second wavelength received by the sensor element at the second thickness; and (vii) calculating radiation transmittance of the fluid in the radiation field from the first radiation intensity, the second radiation intensity, the third radiation intensity and the fourth radiation intensity. Thus, the present process relates to a novel manner to measure UV transmittance of a fluid in an on-line or random measurement manner.
Abstract:
The present invention relates to a fluid treatment system comprising: an inlet; an outlet; and a fluid treatment zone disposed between the inlet and the outlet. The fluid treatment zone has disposed therein: (i) an. elongate first radiation source assembly having a first longitudinal axis, and (ii) an elongate second radiation source assembly having a second longitudinal axis. The first longitudinal axis and the second longitudinal axis are non-parallel to each other and to a direction of fluid flow through the fluid treatment zone. The present fluid treatment system has a number of advantages including: it can treat large volumes of fluid (e.g., wastewater, drinking water or the like); it requires a relatively small "footprint"; it results in a relatively lower coefficient of drag resulting in an improved hydraulic pressure loss/gradient over the length of the fluid treatment system; and it results in relatively lower (or no) forced oscillation of the radiation sources thereby obviating or mitigating of breakage of the radiation source and/or protective sleeve (if present). Other advantages are discussed in the specification.