Abstract:
A cell culture substrate of the present invention has a micro-structure satisfying several perspectives that should be significantly considered to provide an effective three-dimensional cell culture environment. The micro-structure enables a cell to be cultured and aggregated in a flow-like three-dimensional micro pellet form, promotes redifferentiation of the cell while suppressing dedifferentiation of the cell during cell culture, suppresses development of cytoskeleton, and increases fluidity and mobility of the cell.
Abstract:
The present invention relates to a method for manufacturing patterned substrates which patterns a substrate with a carbon nanotube Langmuir-Blodgett (LB) thin film using a micro contact printing method or a lift-off method, and to growth and differentiation control of stem cells using the same. By using the present invention: manufacturing can be simply completed by attaching and detaching a mold; patterns can be formed on curved surfaces so that patterns can be formed on various shaped substrates; and various shaped patterns can be formed so that the method for manufacturing patterned substrates can be applied in various industries. In addition, the present invention controls growth and differentiation of the stem cells through patterning of the carbon nanotube LB thin film so that the stem cells can be grew in short time and differentiation can be enhanced. [Reference numerals] (AA) Barrier; (BB) Carbon nanotube; (CC) Water; (DD) Transfer carbon nanotube LB thin film to PDMS mold; (EE) PDMS mold; (FF) Carbon nanotube; (GG) Heat at 80°C for 5 minutes after attaching on a substrate; (HH) Substrate; (II) Remove mold; (JJ) Carbon nanotube LB thinfilm pattern; (KK) Transfer the carbon nanotube LB thin film to the substrate; (LL) Carbon nanotube LB thin film; (MM) Heat at 80°C for 5 minutes after attaching the PDMS mold to the thin film; (NN) Remove mold
Abstract:
The present invention relates to a biomarker composition for diagnosing toxicity of nanoparticles, wherein the biomarker composition comprises at least one gene selected from aldehyde dehydrogenase, glutamic-pyruvate transaminase, glutamate dehydrogenase, glutamic oxaloacetic transaminase, glutamic acid decarboxylase, and glutamate-ammonia ligase, and causes a change in expression due to the exposure to nanoparticles. A biomarker according to the present invention is a genetic marker having a high correlation with the toxicity of nanoparticles. The biomarker of the present invention is used to confirm the toxicity of nanoparticles at a degree of more accurate and excellent detection. Therefore, the biomarker of the present invention is useful for monitoring or evaluating the toxicity of nanoparticles and useful as a tool for establishing effects on various diseases or the health, which is caused by the exposure to the nanoparticles.
Abstract:
PURPOSE: An n-acetylated chitosan-carbon nano-tube complex and a method for manufacturing the same are provided to individualize the complex and to improve the bio compatibility of the complex by applying carbon nano-tube to n-acetylated chitosan. CONSTITUTION: In an n-acetylated chitosan-carbon nano-tube complex, an n-acetylated chitosan is non-covalently bonded with carbon nano-tube. The diameter of the n-acetylated chitosan-carbon nano-tube complex is less than or equal to 10nm. A method for manufacturing the n-acetylated chitosan-carbon nano-tube complex includes the following: Carbon nano-tube is introduced into an N-acetylated chitosan aqueous solution, and an ultrasonic wave is applied to the solution. A centrifugation process is further implemented after the ultrasonic wave applying process. The centrifugation process is implemented at 1000-5000RPM for 3-10 hours. The complex is individualized by the centrifugation process.
Abstract:
본 실시예에 따른 입자 정렬을 이용한 코팅 방법은, 매끈한면을 가지는 밀착성 고분자 기판을 준비하는 준비 단계; 및 상기 밀착성 고분자 기판의 상기 매끈한면 위에 복수의 입자를 압력을 가하여 상기 밀착성 고분자 기판의 상기 매끈한면에 상기 복수의 입자에 각기 대응하는 복수의 오목부를 형성하면서 상기 복수의 입자와 상기 밀착성 고분자 기판 사이의 결합특성을 강화하며 상기 복수의 입자를 코팅하는 코팅 단계를 포함한다.