Abstract:
본 발명은 나노입자의 신경독성 여부 진단용 바이오마커 조성물에 관한 것으로서, MNPs@SiO 2 (RITC)와 같은 나노입자는 세포내 폴리아민 대사체, 예를들어 푸트레신은 증가시키고 스페르미딘과 스페르민은 감소시키며, 또한 폴리아민의 대사와 관련된 유전자인 ODC1, SAT1, PAOX 및 SRM1의 발현을 증가시켜 봉입체 형성을 증가시키고 신경 부전을 야기할 수 있는 바, 나노입자에 의한 세포내 응집체 형성을 통한 나노신경독성을 판단하는 지표로서 폴리아민 대사체 및 폴리아민 대사와 관련된 유전자를 이용하여 나노 신경독성 생지표를 제공할 수 있다.
Abstract:
본 발명은 나노입자 및 환경에서 발생되는 미세입자에 대한 독성을 저해하는 조성물에 관한 것으로, 나노입자 또는 환경 유래 미세 입자로 유발된 세포 내 ATP 감소, 세포 생존율 감소, 세포의 염증 유발성 형태 변화 및 세포의 활성화가 본 발명에 따른 조성물에 의해 저해되는 것이 확인됨에 따라, 상기 조성물은 나노입자 및 미세입자의 독성에 대한 저감 물질로 유용하게 사용될 수 있는 가능성이 있다.
Abstract:
A cell culture substrate of the present invention has a micro-structure satisfying several perspectives that should be significantly considered to provide an effective three-dimensional cell culture environment. The micro-structure enables a cell to be cultured and aggregated in a flow-like three-dimensional micro pellet form, promotes redifferentiation of the cell while suppressing dedifferentiation of the cell during cell culture, suppresses development of cytoskeleton, and increases fluidity and mobility of the cell.
Abstract:
The present invention relates to a method for manufacturing patterned substrates which patterns a substrate with a carbon nanotube Langmuir-Blodgett (LB) thin film using a micro contact printing method or a lift-off method, and to growth and differentiation control of stem cells using the same. By using the present invention: manufacturing can be simply completed by attaching and detaching a mold; patterns can be formed on curved surfaces so that patterns can be formed on various shaped substrates; and various shaped patterns can be formed so that the method for manufacturing patterned substrates can be applied in various industries. In addition, the present invention controls growth and differentiation of the stem cells through patterning of the carbon nanotube LB thin film so that the stem cells can be grew in short time and differentiation can be enhanced. [Reference numerals] (AA) Barrier; (BB) Carbon nanotube; (CC) Water; (DD) Transfer carbon nanotube LB thin film to PDMS mold; (EE) PDMS mold; (FF) Carbon nanotube; (GG) Heat at 80°C for 5 minutes after attaching on a substrate; (HH) Substrate; (II) Remove mold; (JJ) Carbon nanotube LB thinfilm pattern; (KK) Transfer the carbon nanotube LB thin film to the substrate; (LL) Carbon nanotube LB thin film; (MM) Heat at 80°C for 5 minutes after attaching the PDMS mold to the thin film; (NN) Remove mold
Abstract:
The present invention relates to a biomarker composition for diagnosing toxicity of nanoparticles, wherein the biomarker composition comprises at least one gene selected from aldehyde dehydrogenase, glutamic-pyruvate transaminase, glutamate dehydrogenase, glutamic oxaloacetic transaminase, glutamic acid decarboxylase, and glutamate-ammonia ligase, and causes a change in expression due to the exposure to nanoparticles. A biomarker according to the present invention is a genetic marker having a high correlation with the toxicity of nanoparticles. The biomarker of the present invention is used to confirm the toxicity of nanoparticles at a degree of more accurate and excellent detection. Therefore, the biomarker of the present invention is useful for monitoring or evaluating the toxicity of nanoparticles and useful as a tool for establishing effects on various diseases or the health, which is caused by the exposure to the nanoparticles.
Abstract:
본 발명은 기체크로마토그래피-질량분석기를 이용하여, 생체시료로부터 멜라토닌 및 이의 전구체를 동시에 분석하는 방법을 제공하는 것으로, 구체적으로 멜라토닌 및 이의 전구체를 두 번 유도체화 하고 이 때의 반응조건을 조절하여, 생체내에 미량으로 존재하고 있어서 분석이 어려운 멜라토닌과 산화되고 분해되기 쉬운 멜라토닌의 전구체들을 동시에 분석할 수 있는 방법을 제공한다.
Abstract:
PURPOSE: A method for simultaneously analyzing melatonin and the precursor of the same based on a gas chromatography-mass spectrometry is provided to derivatize the precursor of the melatonin, which is easily oxidized or decomposed, into stable materials. CONSTITUTION: A method for simultaneously analyzing melatonin and the precursor of the same based on a gas chromatography-mass spectrometry includes the following: A mixture containing a bio specimen is reacted with ethyl chlorofomate at pH 6-8. The resultant is reacted with ethyl chlorofomate at pH 11-13. The resultant is extracted using a solvent containing diethylether and ethyl acetate in order to obtain an extract. The extract is reacted with pentafluoropropionic anhydride. The resultant is analyzed.