Abstract:
PURPOSE: A manufacturing method of a titanate nano-tube which contains titanium dioxide is provided to obtain titanate nano-tubes having anatase crystalline through an acid process and a surface process. CONSTITUTION: A manufacturing method of a titanate nano-tube which contains titanium dioxide comprises the following steps: a first step of obtaining titanate nanotube powder by reacting titanium dioxide in strong alkali aqueous solution(s1); and a second step of obtaining the titanate nano-tube containing anatase crystalline by reacting the titanate nano-tube powder with the strong acid aqueous solution(s2). The strong alkali solution is more than one which is selected from LiOH, NaOH, and KOH. A concentration of the strong alkali solution is 5-20M. In the first step, reflux reaction is processed at 50-180 deg. Celsius for 10-60 hours. The strong acid aqueous solution is more than one selected from HCl, HNO3, and H2SO4. A concentration of the strong acid aqueous solution is 0.05-5M.
Abstract:
본 발명은 대전방지층을 별도로 형성할 필요없이 하드 코팅층에 대전방지 기능을 포함할 수 있도록 하기 위하여 알루미늄이 도핑된 산화아연 나노로드를 포함하는 하드 코팅액 및 이를 이용한 하드 코팅 필름을 제공한다. 대전방지, 알루미늄이 도핑된 산화아연, 나노로드, 하드코팅 필름
Abstract:
PURPOSE: A method for fabricating composite fiber is provided to ensure antibacterial activity, UV protection, and deordorization. CONSTITUTION: A method for fabricating composite fiber comprises: a step of forming a resin composition having 0.5-20 weight% of titanium dioxide(TiO_2) nanopowder and 80-99.5 weight% polymer resin; a step of forming a sheath using the resin composition and forming a core using the polymer resin composition; and a step of dipping composite fiber in a metal precursor solution for photodeposition.
Abstract:
본 발명은 아나타제 결정상을 갖는 이산화티탄이 함유 된 탄소나노섬유 제조방법에 관한 것으로서, 탄소섬유전구체 재료, 이산화티탄 및 용매를 혼합하여 방사용액을 제조하는 단계, 상기 제조한 방사용액을 전기 방사하여 상기 이산화티탄이 포함된 복합나노섬유를 얻는 단계, 상기 복합나노섬유를 공기 중에서 가열시켜 안정화 시키는 산화안정화 단계, 상기 산화안정화 된 복합나노섬유를 불활성 분위기 내에서 가열하는 탄화 단계 및 상기 탄화 된 복합나노섬유를 다시 아나타제 결정상을 갖는 이산화티탄을 얻기 위해 가열하는 후 산화 단계를 포함함으로써, 휘발성 유기화합물인 아세트알데히드를 효과적으로 광분해 시킬 수 있는 기술적 장점이 있다. 탄소나노섬유, 금속산화물, 산화, 광활성
Abstract:
A metal hydroxide containing complex fiber, a metal oxide nanofiber and a manufacturing method thereof are provided to have the ultra-fine holes, thereby capable of using as various uses. A precursor containing metal ions is mixed with the high polymer resin solution so that the mixture solution containing metal hydroxide is prepared. The mixture solution is spun electrically so that the complex fiber containing the metal hydroxide and the high polymer resin is manufactured. The metal hydroxide is transformed into the metal oxide and then the high polymer fiber is sintered in order to remove the high polymer resin. The precursor containing metal ions is a metal salt or an organic metal compound including at least one metal selected from a group consisting of indium, tin, copper and zinc and the like. The precursor of 0.01 to 2 mol is mixed with the high polymer resin of 1 mol. The electric spun is performed by voltage of 5 to 10kV. Further, a plasticizing temperature of the complex fiber is 400-800°C.
Abstract:
PURPOSE: A manufacturing method of metal oxide nanofiber having hollow structure is provided to have stable hollow structure by plasticizing and coating metal precursor solution which has glycol solvent to the non-aqueous polymer nanofiber. CONSTITUTION: The manufacturing method of metal oxide nanofiber having hollow structure comprises the following steps. a) Non-aqueous polymer nanofiber is prepared through the electric radiation process. b) The precursor solution containing metal ion is prepared by melting the precursor containing metal ion in the Glycol. c) The non-aqueous polymer nanofiber is dipped in the precursor solution containing metal ion to be coated. d) Non-aqueous polymer is removed by firing the non-aqueous polymer nanofiber coated with the precursor solution which contains the metal ion. [Reference numerals] (a) X 5,000; (b) X 100,000
Abstract:
본 발명은 나노박편의 연속적 대량 생산방법에 관한 것으로, 상세하게는 전기화학적 반응을 이용해 벌크 형태의 그래파이트를 박편 형태로 박리한 후 펄스 형태의 초음파 인가를 통해 포화 박리층을 제거함으로써 탄소나노박편 및 적층 형태의 탄소나노박편을 연속적으로 대량 생산할 수 있는 방법을 제공하므로, 연속 복합공정을 이용해 분산 성능이 뛰어나며, 물리화학적 성능이 우수한 나노박편을 저비용으로 대용량 생산할 수 있다.