Abstract:
PURPOSE: A graphene nano-sheet and a manufacturing method thereof are provided to synthesize the graphene nano-sheet only within several seconds to several minutes by using an ultra fast combustion method without an after treatment process and other addition processes. CONSTITUTION: A manufacturing method of a graphene nano-sheet comprises the following steps: a preparing step aims to prepare a reacting solution by mixing a graphite oxide, a polyol solvent, and a flammable liquid; a burning step aims to completely burn the reacting solution by lighting a fire after the reacting solution is poured and circulated on a bottom plate; and an yielding step aims to yield a residue which remains after burning completely in the bottom plate. The yielding step comprises a step of processing an obtained residue with an ultrasonic wave.
Abstract:
본 발명은 리튬 이차전지용 음극활물질 복합체 및 이를 이용한 리튬 이차전지 제조 방법에 관한 것으로서, 더욱 상세하게는 리튬 이차전지용 음극활물질에서의 비가역 방전용량 문제를 해결할 수 있도록 한 리튬 이차전지용 음극활물질 복합체 및 이를 이용한 리튬 이차전지 제조 방법에 관한 것이다. 즉, 본 발명은 기존 비가역 방전용량이 심한 음극활물질(흑연계, 실리콘계, 합금계, 산화물계, 인산화물, 칼코젠나이드 화합물 등)과 리튬이온에 대한 이온전도성이 우수한 질화리튬(Li 3 N)에 전기전도성을 부여하기 위하여 전이금속원자(M: Co, Ni, Ti, Mn, Cr, Fe, Cu, Zn, V 등)를 첨가한 질화전이금속리튬 화합물(Li 3-x M x N : M = Co, Ni, Ti, Mn, Cr, Fe, Cu, Zn, V)을 적절한 비율로 혼합(blending)하여, 리튬 이차전지용 음극활물질에서 발생하는 비가역 방전용량 문제점을 해결하고자 한 리튬 이차전지용 음극활물질 복합체 및 이를 이용한 리튬 이차전지 제조 방법을 제공하고자 한 것이다. 리튬, 이차전지, 음극활물질, 양극, 전해질, 질화리튬, 전이금속원자, 질화 전이금속 리튬 화합물, 인산화물
Abstract:
PURPOSE: A negative electrode active material for a rechargeable lithium ion battery using waste sludge is provided to ensure high discharge capacity and electrochemical stability by recycling waste sludge. CONSTITUTION: A negative electrode active material for a rechargeable lithium ion battery using waste sludge comprises the steps of: injecting a mucolytic titanium compound into contaminated water as a coagulant in contaminated water to produce an aggregate; and separating the aggregate from a supernatant; dehydrating the aggregate separating from the supernatant; and sintering the dehydrated aggregate.
Abstract:
A cathode material of a lithium secondary battery and a manufacturing method thereof are provided to realize high-capacity while suppressing transition to a spinel phase during several times cycle process through the partial substitution of transition metal having low valent metal in a LiM'M"O3 structure, or model metal. A method for manufacturing a cathode material of a lithium secondary battery comprises (S110) a step for obtaining a lithium precursor, M' precursor and M'' precursor by dissolving the lithium precursor, M' precursor and M'' precursor in distilled water respectively; (S120) a step for obtaining the M'M'' precursor solution by adding M'' precursor solution in M' precursor; (S130) a step for obtaining the lithium M'M'' precursor solution by adding the lithium precursor solution in the M'M'' precursor solution; (S140) a step for agitating the lithium M'M'' precursor solution; (S150) a step for obtaining parent powder by putting the agitated lithium M'M'' precursor solution in an oven, and evaporating water from the M'M'' precursor solution; (S160) a step for pulverizing the parent powder and to heating it to the first temperature in the atmosphere; (S170) a step for heating the parent powder at the second temperature higher than the first temperature and cooling it; and (S180) a step for obtaining a cathode material of a lithium secondary battery by washing the cooled parent powder with distilled water and drying the washed parent powder.
Abstract:
PURPOSE: A manufacturing method of a lithium manganese oxide electrode material is provided to manufacture a crystalline lithium manganese oxide electrode material using an amorphous lithium manganese oxide as a starting material. CONSTITUTION: A manufacturing method of a lithium manganese oxide electrode material comprises a step of obtaining a uniform mixture by mixing amorphous lithium manganese oxide; and a step of heat-treating the mixture under oxygen or air atmosphere. The molar ratio of lithium and manganese is 6:5-10:5, in the mixture. The mixing step comprises a dry ball-milling the amorphous lithium manganese oxide and lithium. The heat-treating step is conducted in a vacuum furnace at 400-900 deg. C for 8-20 hours.
Abstract translation:目的:提供一种锂锰氧化物电极材料的制造方法,以制造使用无定形锰酸锂作为原料的结晶锂锰氧化物电极材料。 构成:锂锰氧化物电极材料的制造方法包括通过混合无定形锰酸锂获得均匀混合物的步骤; 以及在氧气或空气气氛下对混合物进行热处理的步骤。 在混合物中锂和锰的摩尔比为6:5-10:5。 混合步骤包括无定形的锂锰氧化物和锂的干球磨。 热处理步骤在400-900度的真空炉中进行。 C 8-20小时。
Abstract:
PURPOSE: A manufacturing method of lithium-manganese oxide of excessive lithium and a secondary battery using thereof are provided to enhancing charge and discharge characters even in volume, variety, and velocity. CONSTITUTION: A manufacturing method of lithium-manganese oxide of excessive lithium is represented by chemical formula 1. The manufacturing method of lithium-manganese oxide of excessive lithium comprises the next steps: processing a reaction of lithium complex with lithium manganese based oxide which is represented by chemical formula 2 in reducing condition in order to synthesize lithium manganese based oxide; and synthesizing lithium manganese based oxide. The chemical formula 1 is same as follow: Li1+xMyMn2-yO4-zQz. The chemical formula 2 is same as follow: Li1+xMyMn2-x-yO4-zQ'z.
Abstract:
본 발명은 충방전이 가능한 리튬 이차전지용 고용량 음극소재 및 그 제조 방법에 관한 것으로서, 용매열 합성법을 이용하여 리튬 이차전지용 음극 활물질로 각광받고 있는 제로 스트레인 인서트 물질(zero-strain insertion material) 인 Li 4 Ti 5 O 12 전극재료를 용이하게 합성함으로써, 기존의 폴리올 또는 고상법을 이용한 합성 방법에 비하여 우수한 결정성 및 고율 특성을 발현하는 Li 4 Ti 5 O 12 나노입자를 얻을 수 있도록 한 급속 충방전이 가능한 리튬 이차전지용 고용량 음극소재 및 그 제조 방법을 제공하고자 한 것이다. 리튬 이차전지, 음극소재, 용매열 합성법, 전극재료, 충방전, 나노입자, 고율 특성
Abstract:
PURPOSE: A process for manufacturing a negative electrode material for a lithium secondary battery is provided to manufacture various phosphate-based negative electrode materials without thermal process of high temperature and to reduce the time required for whole process. CONSTITUTION: A process for manufacturing a negative electrode material for a lithium secondary battery includes the steps of: mixing transition metal compounds dissolved in distilled water with poly acid phosphate-based compounds to prepare a mixed solution; stirring the mixed solution to prepare a precipitate by a co-precipitation method; drying the precipitate to a temperature of 50-80 °C; and heat-treating the dried material at a temperature of 300-500 °C.
Abstract:
PURPOSE: A negative active material composite for a lithium rechargeable battery is provided to prevent the generation of severe irreversible discharge capacity in initial charge-discharging, thereby preventing the degradation of capacity and performance of the lithium rechargeable battery. CONSTITUTION: A negative active material composite for a lithium rechargeable battery is formed by mixing a nitrate transition metal lithium compound into a negative active material with severe irreversible discharge capacity in a proper ratio, wherein the nitrate transition metal lithium compound is formed by adding transition metal atom for imparting electroconductivity to lithium nitride(Li3N). The negative active material composite for a lithium rechargeable battery is configured to reduce an initial irreversible generation capacity.
Abstract:
A cathode material of a lithium-ion battery and a manufacturing method thereof is provided to realize high-capacity while suppressing transition to a spinel phase by bonding oxygen through the partial substitution of transition metal having low valent metal in a LiM'M''O3 structure, or model metal. A method for manufacturing a cathode material of a lithium secondary battery comprises (S110) a step for manufacturing a lithium precursor, M' precursor and M'' precursor by dissolving the lithium precursor, M' precursor and M'' precursor in distilled water respectively; (S120) a step for manufacturing the M'M'' precursor solution by adding M'' precursor solution in M' precursor; (S130) a step for manufacturing the lithium M'M'' precursor solution by adding the lithium precursor solution in the M'M'' precursor solution; (S140) a step for agitating the lithium M'M'' precursor solution; (S150) a step for obtaining parent powder by putting the agitated lithium M'M'' precursor solution in an oven, and evaporating water from the M'M'' precursor solution; (S160) a step for pulverizing the parent powder and to heating it to the first temperature in the atmosphere; (S170) a step for heating the parent powder at the second temperature higher than the first temperature and cooling it; and (S180) a step for obtaining a cathode material of a lithium secondary battery by washing the cooled parent powder with distilled water and drying the washed parent powder.