Abstract:
본 발명은 기재 (基材) 금속, 상기 기재 금속의 표면에 피복된 금 또는 은 박막, 상기 금 또는 은 박막 위에 흡착된 관능성 황 화합물, 상기 황 화합물의 관능기에 화학적으로 결합된 헤파린 (heparin) 또는 에스트라디올 (estradiol) 유도체와 같은 생리활성 물질을 포함하는 표면 개질된 의료용 금속 재료 및 이를 이용하여 제작된 스텐트, 심장 판막 및 카데타를 개시한다. 또한 본 발명은 (1) 기재 금속의 표면에 금 또는 은 박막을 피복하는 단계, (2) 상기 금 또는 은 박막 위에 관능성 황 화합물을 흡착시키는 단계, 및 (3) 상기 황 화합물의 관능기에 생리활성 물질을 화학적으로 결합시키는 단계를 포함하는, 표면 개질된 의료용 금속 재료의 제조 방법을 개시한다.
Abstract:
PURPOSE: A porous supporter for tissue engineering obtained from a copolymer of biodegradable glycolide/ε-caprolactone having excellent mechanical properties such as flexibility and elasticity and biodegradability is provided which can be effectively used as material for regenerating tissue of desired shapes. CONSTITUTION: This porous supporter is prepared from a biodegradable glycolide/ε -caprolactone copolymer having a recurring unit of formula 1 and a weight average molecular weight of 10,000. In formula, x and y are each 18 or more. The porous supporter has a pore size of 1 to 800 microns and a porosity of 50 to 99%.
Abstract:
PURPOSE: A star-shaped glycolide/epsilon-caprolactone co-polymer and a preparation method thereof are provided, which has a weight average molecular weight over 30,000 and a low melting viscosity. CONSTITUTION: A preparation method of star-shaped biodegradable glycolide/epsilon-caprolactone co-polymer of formula 1 comprises: in the presence of ring-opening polymerization catalyst of glycolide/epsilon-caprolactone, performing a ring-opening polymerization by heating glycolide and epsilon-caprolactone through using polyhydric alcohol as polymerization initiator under vacuum pressure. The polyhydric alcohol is selected from the group of glycerol, penta-erythritol, di-penta-erythritol, tri-penta-erythritol, sorbitol, poly-vinyl alcohol, poly-hydroxy ethyl methacrylate, and poly-hydroxy propyl methacrylate. The catalyst is selected from the group of tetra-phenyl tin, tin powder, stannous octoate, tin chloride, tin oxide, zinc powder, di-ethyl zinc octoate, zinc chloride, and zinc oxide.
Abstract:
Disclosed is a biocompatible medical material and porous scaffold for use in tissue engineering, made from a biodegradable glycolide/epsilon-caprolactone copolymer having a repeat unit of wherein x and y are integers greater than or equal to 18, the copolymer has an average molecular weight of about 10,000 daltons or more, and the molar ratio of glycolide: epsilon-caprolactone in the copolymer is about 4.0:6.0 to 6.0:4.0.
Abstract:
PURPOSE: A poly-methyl methacrylate having hydrophilic surface and a use thereof as ophthalmic material are provided, which maintains an optical property of PMMA and which reduces adhesion growth of cell and protein. CONSTITUTION: A preparation method of poly-methyl methacrylate having hydrophilic surface is formed by bonding poly-ethylene oxide derivative of formula: NH2-R1-O-(CH2CH2O)n-X containing amino group at the end in the presence of catalyst at the surface of poly-methyl methacrylate chemically. In formula, R1 is (CH2CH2)2-3, n is 15-300, X is hydrogen, CH3, (CH2CH2)2-3-NH2 or (CH2CH2)2-3-NH-(CH2)3-SO3H. The molecular weight of poly-ethylene oxide is 200-10,000. The catalyst is tri-ethylamine.
Abstract:
본 발명은 기재(基材) 금속, 상기 기재 금속의 표면에 피복된 금 또는 은 박막, 상기 금 또는 은 박막 위에 흡착된 관능성 황 화합물, 상기 황 화합물의 관능기에 화학적으로 결합된 술폰산화 폴리에틸렌 옥사이드(PEO) 유도체를 포함하는 표면 개질된 의료용 금속 재료 및 이를 이용하여 제작된 스텐트, 심장 판막 및 카데타를 개시한다. 또한 본 발명은 (1) 기재 금속의 표면에 금 또는 은 박막을 피복하는 단계, (2) 상기 금 또는 은 박막 위에 관능성 황 화합물을 흡착시키는 단계, 및 (3) 상기 황 화합물의 관능기에 술폰산화 폴리에틸렌 옥사이드(PEO) 유도체를 화학적으로 결합시키는 단계를 포함하는, 표면 개질된 의료용 금속 재료의 제조 방법을 개시한다.
Abstract:
PURPOSE: A metallic material for medical treatment and a method for manufacturing the same are provided in which antithrombogenicity and biocompatibility are tremendously improved by chemically bonding sulfonated PEO (poly(ethylene oxide)) derivatives using functional groups of sulphur compounds adsorbed after adhering the sulphur compounds strongly adsorbed to a gold or silver thin film after covering a gold or silver thin film on the surface of a metal in an electroplating, vacuum vapor deposition or ion sputtering. CONSTITUTION: The metallic material for medical treatment the surface of which is reformed comprises a substrate metal; a gold or silver thin film covered on the surface of the substrate metal; sulphur compounds having functional groups adsorbed onto the gold or silver thin film; and sulfonated poly(ethylene oxide) (PEO) derivatives chemically bonded to the functional groups of the sulphur compounds. The method for manufacturing the surface reformed metallic material for medical treatment comprises the steps of covering a gold or silver thin film on the surface of a substrate metal; adsorbing sulphur compounds having functional groups on the gold or silver thin film; and chemically bonding sulfonated poly(ethylene oxide) (PEO) derivatives to the functional groups of the sulphur compounds.
Abstract:
PURPOSE: An ionic complex compound of L- or D-arginine and taurine or polyacrylic acid is provided, that is useful as a medicament for treating or preventing circulatory system diseases or as food supplements. CONSTITUTION: The ionic complex compound is a complex compound of L- or D-arginine and polyionic compound. The polyionic compound is selected from the group consisting of taurine, polyacrylic acid, alginate, sulfonic amino polyethylene oxide derivatives, chitosan and heparin. When the polyionic compound is taurine, a molar ratio of L- or D-arginine to taurine is from 4:1 to 1:4. A pharmaceutical composition containing the ionic complex compound can be used for the treatment or prevention of the circulatory system diseases such as arteriosclerosis, angina pectoris and hypertension.
Abstract:
본 발명 한쪽 말단 또는 양쪽 말단이 술폰화된 하기식(I)의 술폰화 폴리에틸렌옥사이드 유도체를 제공한다. R 1 -PEO-R 2 (I) 식중, R 1 은 OH, NH 2 , COOH, SO 3 H 및 SO 3 Na로 이루어진 군으로부터 선택된 기이고, R 2 는 SO 3 H 또는 SO 3 Na로 이루어진 군으로부터 선택된 기이며, PEO는 분자량 100 내지 20,000 바람직하게는 분자량 200 내지 10,000의 폴리에틸렌옥사이드를 나타낸다. 본 발명의 술폰화 폴리에틸렌옥사이드 유도체는 종래의 헤파린 유사 물질과는 달리, 제조하기가 쉽고 생체내에서 장기간 사용하여도 분해가 거의 일어나지 않으며 항응혈 활성이 커서, 헤파닐 대체 물질로서 유리하게 사용될 수 있으며 또한 의료용 재료에 분산, 이온결합, 공유결합 및 코팅해서 생체적 합성재료로도 응용될 수 있다.