Abstract:
본 발명은 차량 속도 감속 단계에서 배터리로 충전되는 회생제동 전력과 레귤레이터 충전전력을 레귤레이터 on/off를 통해 안정적으로 제어하여 안전성 및 효율성을 높인 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 충전 전력 분배 제어 방법에 관한 것으로,차량 속도가 감속되면, 현재 회생 제동 전력이 공급되는 상태인지를 판단하는 단계;회생 제동 전력이 공급되는 상태라면 레귤레이터를 off하고, 회생 제동 전력으로 배터리를 충전하고,회생 제동 전력이 공급되지 않는 상태라면 레귤레이터를 on하여, 레귤레이터로부터 전력을 공급하여 배터리를 충전하는 단계;를 포함한다. 전기자동차, 충전 제어, 비접촉 자기 유도, 양방향 회생제동, 배터리 충전
Abstract:
PURPOSE: A feeding module for an electric vehicle of a noncontact electromagnetic inductive charging method is provided to improve energy efficiency by installing a ferrite structure around a feeding line. CONSTITUTION: A feeding line(1) is buried under the ground and supplies energy. An insulator support unit(2) is connected to the feeding line and supports the feeding line. A ground line(3) is connected to the insulator support unit. The ground line supports the insulator support unit and functions as the ground. A protection cover(4) surrounds the feeding line, the insulator support unit and a ground line with a space.
Abstract:
본 발명은 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 구동모터에서 나오는 회생제동 에너지를 에너지 저장부에 먼저 회생 제동 에너지를 저장한 후 적절한 제어신호를 통해 배터리로 충전시킴으로서 시스템의 에너지 효율성과 안전성을 확보하기 위한 전기자동차의 단방향 회생제동 제어 방법에 관한 것으로서, 급전 선로로부터 자기장의 형태로 공급되는 AC 전류를 입력받아 집전하고, 집전한 AC 전류를 DC 전류로 변환하여 구동모터 구동을 위한 자기유도 에너지를 생성하는 단계와, MCU로부터 구동모터의 요구전력을 입력받아 상기 생성된 자기유도 에너지를 구동모터로 공급하는 단계와, 상기 공급되는 자기유도 에너지와 구동모터의 요구전력 에너지를 비교하는 비교단계와, 상기 비교결과, 자기유도 에너지가 구동모터 구동을 위한 요구전력 에너지보다 작은 경우 MCU의 제어로 배터리의 SOC를 체크하여 배터리를 방전하는 단계와, 상기 자기유도 에너지에서 잉여 에너지가 발생되는 경우 MCU의 제어를 받아 에너지 저장부로 상기 잉여 에너지를 저장하는 단계와, MCU의 제어로 배터리의 SOC(State Of Charge)를 체크하여 상기 에너지 저장부에 저장된 잉여 에너지를 배터리로 충전하는 단계를 포함하는데 있다. 전기자동차, 회생제동, 단방향, 배터리
Abstract:
PURPOSE: A lifting device of a current collector for an electric vehicle is provided to prevent damages due to collision with an object on a road by lifting a current collector by shrinking a first link member and a second link member. CONSTITUTION: The upper side of a first link member is rotatably combined with a fixed bracket(10). The lower side of the first link member is connected to the upper side of a movable bracket(20). A second link member(40) is hinged with the first link member. An actuator(50) interlocks the first and second link members. A hydraulic unit(70) supplies hydraulic pressure to the actuator according to a signal applied from a controller of an electric vehicle.
Abstract:
PURPOSE: A one way regenerative braking control method of an electric vehicle of a noncontact electromagnetic inductive charging method is provided to increase the efficiency of energy by controlling the energy inputted to a battery through one energy storage unit. CONSTITUTION: If electromagnetic inductive energy is smaller than power energy for driving a driving motor, a battery is discharged by checking SOC(State Of Charge) through the control of a MCU(S60). If surplus energy is generated from the electromagnetic inductive energy, the surplus energy is stored in an energy storage unit(S160). The battery is charged with the surplus energy stored in the energy storage unit by checking the SOC of the battery through the control of the MCU(S90).
Abstract:
PURPOSE: A method for controlling a charged power distribution of an electric vehicle of a noncontact electromagnetic inductive charging method is provided to improve the energy efficiency of a system by preventing an overcharge current which is inputted to a battery. CONSTITUTION: It is determined whether power is supplied from a regulator(S203). If the power is not supplied from the regulator, a regenerative braking function is on(S204). Regenerative braking energy is supplied(S205). A battery is charged(S206). If the power is supplied from the regulator, the regenerative braking function is off(S207). A battery is charged by supplying the collected electromagnetic inductive energy to a driving motor.
Abstract:
PURPOSE: A device for cooling and heating a battery pack of a noncontact electromagnetic inductive charging method and a method for generating power by recovering waste heat from the battery pack using the same are provided to improve the efficiency of a system by effectively recovering waste heat from a battery. CONSTITUTION: A battery pack(1) supplies and stores power. A thermoelectric element(2) is installed in the battery pack. The thermoelectric element changes heat generated from the battery pack into electric energy. A DC power supply unit is connected to the thermoelectric element. The DC power supply unit supplies DC power.
Abstract:
PURPOSE: A connecting structure between a drive motor and a transmission of a non-contact electromagnetic inductive charging type electric vehicle is provided to improve output efficiency by absorbing a shock generated between a drive motor and a transmission. CONSTITUTION: A coupling unit(300) absorbs a shock generated between a motor shaft of a drive motor and a transmission shaft when the power is transmitted. A coupling unit(300) includes a motor shaft connection part(310), a connection link(320), and a coupling ring(330). The motor shaft connection part is connected to the motor shaft of the drive motor. The connection link is coupled with the motor shaft connection part so as to transmit the torque of the motor shaft connection part to the transmission shaft without the shock. The coupling ring is formed to couple the connection link with the motor shaft connection part.
Abstract:
PURPOSE: A magnetic field shielding device for a non-contact electromagnetic inductive charging electric vehicle is provided to minimize an electromagnetic wave and a magnetic field generated between a current collecting device and a power supply device from being leaked to the outside, thereby increasing current collecting efficiency. CONSTITUTION: A current collecting device(5) is installed in the lower part of the frame of a non-contact electromagnetic inductive charging electric vehicle. The current collecting device generates inductive power by magnetic fields of a power supply device which is embedded in a power supply road(1). A magnetic field shielding device for a non-contact electromagnetic inductive charging electric vehicle comprises a fixing bracket(13), a shielding member(11), an operating member(14), and an actuator. The fixing bracket is fixed to the lower frame of the vehicle. The shielding member is vertically installed in the lower part of the fixing bracket to prevent an electromagnetic wave and a magnetic field generated between the current collecting device and the power supply road from being leaked to the outside. One side of the actuator is coupled with the operating member to rotate first and second link members each other.
Abstract:
PURPOSE: A magnetic field shielding device for a non-contact electromagnetic inductive charging electric vehicle is provided to minimize the influence of an electromagnetic wave and a magnetic field to people. CONSTITUTION: A current collecting device(5) is installed in the lower part of the frame of a non-contact electromagnetic inductive charging electric vehicle. The current collecting device generates inductive power by magnetic fields of a power supply device which is embedded in a power supply road(1). A magnetic field shielding device(10) for a non-contact electromagnetic inductive charging electric vehicle comprises a shielding cover(11) and a magnetic object(12). The metallic shielding cover is installed on the current collecting device. The magnetic object is installed on the inner side of the shielding cover to prevent an electromagnetic wave and a magnetic field generated between the current collecting device and the power supply road from being leaked to the outside.