탄탈룸 코팅 피막 형성 방법 및 이에 의해 제조된 구조재
    11.
    发明授权
    탄탈룸 코팅 피막 형성 방법 및 이에 의해 제조된 구조재 有权
    形成钽涂膜的方法及其制造的结构框架

    公开(公告)号:KR101656157B1

    公开(公告)日:2016-09-08

    申请号:KR1020140195515

    申请日:2014-12-31

    Abstract: 본발명은탄탈룸코팅피막형성방법및 이에의해제조된구조재를개시한다. 본발명에따르면, (a) 탄탈룸와이어와모재를용접하는단계; (b) LiF, NaF 및 KTaF으로구성되고, 탄탈룸을전기도금하기위한용융염을형성하는단계; (c) 탄탈룸와이어와모재를작업전극으로백금와이어를기준전극으로하여용융염내에장입하는단계; 및 (d) 모재에전류를인가하여상기모재에탄탈룸금속을전착하는단계;를포함하는탄탈룸코팅피막형성방법이제공된다.

    수소 제조용 매체 조성물
    12.
    发明公开
    수소 제조용 매체 조성물 无效
    氢生产介质的组成

    公开(公告)号:KR1020130113681A

    公开(公告)日:2013-10-16

    申请号:KR1020120036059

    申请日:2012-04-06

    CPC classification number: Y02E60/324

    Abstract: PURPOSE: A medium composition for manufacturing hydrogen is provided to be applied to Three-Reactor Chemical-Looping Process (TRLC) including methane reduction reaction, water oxidation reaction, and air oxidation reaction, thereby separating carbon dioxide from methane while hydrogen is being produced. CONSTITUTION: A medium composition for manufacturing hydrogen comprises complex iron oxide represented by the chemical formula 1. [Chemical formula 1] MeaOb-FecOd. In the formula 1, Me is any one or more than two selected from nickel (Ni), copper (Cu), and molybdenum, and a to d are the value based on the mole ratio The a and c satisfy 0.1a / c0.25. The complex iron oxide is dipped in a supporter, and the content of the supporter inside the composition is 60-95 weight%. The supporter is selected from zirconia, alumina, silica, ceria, titania, and a mixture oxide thereof. The composition is applied to Three-Reactor Chemical-Looping Process (TRLC).

    Abstract translation: 目的:提供一种用于制造氢的介质组合物,用于三反应堆化学循环过程(TRLC),包括甲烷还原反应,水氧化反应和空气氧化反应,从而在产生氢气的同时从甲烷中分离出二氧化碳。 构成:用于制造氢的介质组合物包括由化学式1表示的复合氧化铁。[化学式1] MeaOb-FecOd。 在式1中,Me是选自镍(Ni),铜(Cu)和钼中的任何一种或多于两种,a至d是基于摩尔比的值a和c满足0.1a / c0。 25。 将复合氧化铁浸渍在支持体中,组合物内的载体的含量为60-95重量%。 载体选自氧化锆,氧化铝,二氧化硅,二氧化铈,二氧化钛及其混合氧化物。 该组合物应用于三反应器化学循环过程(TRLC)。

    수소 생산을 위한 황­요오드 공정
    13.
    发明公开
    수소 생산을 위한 황­요오드 공정 有权
    用于氢气生成的硫酸过程

    公开(公告)号:KR1020130102432A

    公开(公告)日:2013-09-17

    申请号:KR1020120023672

    申请日:2012-03-07

    CPC classification number: Y02E60/324

    Abstract: PURPOSE: A sulfur-iodine process for hydrogen production is provided to effectively perform liquid-liquid separation in the Bunsen reaction, to be able to improve the hydrogen production efficiency, and to have advantage of smooth operation of an electrodialysis device. CONSTITUTION: A sulfur-iodine process for hydrogen production comprises the Bunsen reaction process including a phase separation process of hydrogen iodide solution and sulfuric solution, an HI decomposition process, and a sulfuric acid decomposition process. The mixed hydrogen iodide solution of hydrogen iodide solution phase-separated in the Bunsen reaction process, and the hydrogen iodine solution remained after the HI decomposition is cooled to crystalize iodine contained in the mixed hydrogen iodide solution. The crystalized iodine is collected and fed back to the Bunsen reaction process. The mixed hydrogen iodide solution in which the crystalized iodine has been removed is fed back to the HI decomposition process.

    Abstract translation: 目的:提供用于氢气生产的硫 - 碘工艺,以有效地在本生反应中进行液 - 液分离,以提高氢生产效率,并具有电渗透装置平滑运行的优点。 构成:生产氢碘的方法包括本生反应过程,包括碘化氢溶液和硫酸溶液的相分离过程,HI分解过程和硫酸分解过程。 在本生反应过程中相分离的碘化氢溶液的碘化氢混合液,HI分解后残留的氢碘溶液冷却,使碘化氢溶液中所含的碘结晶。 收集结晶碘并将其反馈至本生反应过程。 已经除去结晶碘的混合碘化氢溶液被反馈到HI分解过程。

    부피법을 이용한 수소 저장 성능 평가 장치의 수소 저장 성능 평가 방법 개선
    15.
    发明公开
    부피법을 이용한 수소 저장 성능 평가 장치의 수소 저장 성능 평가 방법 개선 有权
    在水平存储器的类型体积测量中的改进

    公开(公告)号:KR1020120107035A

    公开(公告)日:2012-09-28

    申请号:KR1020110024609

    申请日:2011-03-18

    CPC classification number: G01N7/04 G01D21/02 Y02E60/32

    Abstract: PURPOSE: An improvement on a hydrogen storage performance evaluation method of a hydrogen storage performance evaluating device using a volume method is provided to improve a PCT(Pressure-Composition-Temperature) curve in consideration of a volume increase of a reactor caused by a heat transmission to a tube of the reactor of high/low temperatures and a system volume variation, thereby enhancing the accuracy of the hydrogen storage performance evaluation. CONSTITUTION: A hydrogen storage performance evaluation method of a hydrogen storage performance evaluating device using a volume method is as follows. Gas amounts within a charging vessel, a tube, and a reactor is calculated when reaching an equilibrium state in which constant pressure is maintained. A storing amount of a specimen absorbed in a hydrogen storing specimen within the reactor is calculated based on a difference between the calculated gas amount(n1) of the charging vessel and the calculated gas(n2) amount of the reactor. The step is repeatedly performed until reaching to desired pressure by successively increasing the pressure so that a PCT curve and a specimen storing amount are obtained. [Reference numerals] (AA) Pressure, kPa

    Abstract translation: 目的:提供使用体积法的储氢性能评价装置的储氢性能评价方法的改进,以考虑到由热传递引起的反应器的体积增加而改善PCT(压力 - 组成 - 温度)曲线 到高/低温反应器的管道和体积变化,从而提高储氢性能评价的准确性。 构成:使用体积法的储氢性能评价装置的储氢性能评价方法如下。 当达到保持恒定压力的平衡状态时,计算充电容器,管和反应器内的气体量。 基于所计算的充电容器的气体量(n1)与反应器的计算气体(n2)的量之差,计算吸收在反应器内的储氢试样中的试样的储存量。 通过连续增加压力直到达到所需压力,重复执行该步骤,从而获得PCT曲线和样品储存量。 (标号)(AA)压力,kPa

    동 제련 부생가스의 처리 방법
    16.
    发明授权
    동 제련 부생가스의 처리 방법 有权
    铜冶炼副产品气处理方法

    公开(公告)号:KR101039715B1

    公开(公告)日:2011-06-13

    申请号:KR1020090005864

    申请日:2009-01-23

    Abstract: 본 발명은 동 정광을 원료로 한 동 제련 시 발생하는 부생 가스의 처리 방법에 관한 것으로, 상세하게는 a) 동정광, 산소부화공기(Oxygen enriched air) 및 실리카 플럭스(flux)를 고온의 자용로(Smelting Furnace)에 투입하는 동 매트의 제조 공정으로부터 이산화황을 함유한 부생가스를 얻는 단계; b) 상기 부생가스의 스크러버(scrubber)를 이용한 세척, 전기 집진기를 이용한 집진 및 건조탑을 이용한 건조를 순차적으로 수행하여 정제된 이산화황 가스를 얻는 단계; c) 상기 정제된 이산화황 가스에서 이산화황을 분리하여 고순도 이산화황 가스를 얻는 단계 및 d) 상기 이산화황 가스를 양이온 교환막이 구비된 전기화학셀의 양극에 주입하고 물을 상기 전기화학셀의 음극에 주입하고 전기화학 반응시켜 황산 및 수소를 얻는 단계;를 포함하여 수행되는 특징이 있다.
    동, 정광, 동광, 황동광, 제련, 정련, 부생 가스, 이산화황, 수소

    분할반응형식의 태양열 집광을 통한 물분해 수소제조장치
    17.
    发明授权
    분할반응형식의 태양열 집광을 통한 물분해 수소제조장치 有权
    基于金属氧化物的太阳能发电装置

    公开(公告)号:KR100891925B1

    公开(公告)日:2009-04-08

    申请号:KR1020070061408

    申请日:2007-06-22

    CPC classification number: Y02E60/36 Y02P20/134

    Abstract: 본 발명은 태양에너지를 이용한 물분해 수소제조장치에 관한 발명이다. 상세하게 본 발명의 물분해 수소제조장치는 금속산화물이 코팅된 세라믹 지지체, 가스투입구 및 가스배출구가 구비된 반응체와 두개 이상의 상기 반응체를 서로 분리시키는 격벽이 구비되며 회전 또는 이동 가능한 반응부; 및 광이 집광되며 상기 반응체 상부로 수광면이 하나 이상 구비되며 회전 또는 이동 가능한 수광부;를 포함하여 구성된다. 본 발명의 물분해 수소제조장치는 하나의 반응부에서 금속산화물의 산화 및 환원 반응이 동시에 일어나며 상기 반응부 또는 수광부의 주기적이고 연속적인 회전에 의하여 연속적으로 산소와 수소가 제조되는 효과가 있으며, 생성된 수소가 다른 기체와 분리된 상태로 반응기에서 배출되므로 단순히 수분을 응축시켜 고순도의 수소를 얻는 장점이 있다.
    물분해, 수소, 태양, 광, 금속산화물, 2단계 열화학 싸이클

    분할반응형식의 태양열 집광을 통한 물분해 수소제조장치
    18.
    发明公开
    분할반응형식의 태양열 집광을 통한 물분해 수소제조장치 有权
    基于金属氧化物的太阳能发电设备

    公开(公告)号:KR1020080112684A

    公开(公告)日:2008-12-26

    申请号:KR1020070061408

    申请日:2007-06-22

    CPC classification number: Y02E60/36 Y02P20/134 C01B3/061 C01B2203/1258

    Abstract: A device for producing hydrogen by decomposing water is provided to need no separation film for separation of hydrogen because generated hydrogen is exhausted from a reactor at a state of being separated with other gas. A device for producing hydrogen by decomposing water comprises a reactive part and a light receiving part(600). The reactive part comprises the ceramic supporter, reaction bodies(510, 520, 530, 540), and a partition. The metal oxide is coated on the ceramic support. A reaction body contains gas inlets(511, 521, 531, 541) and gas exhaust ports(512, 522, 532, 542). The partition separates two or more reaction bodies. The reactive part is rotated or mobile. The light receiving part collects light and contains one or more light collecting surfaces at an upper part of the reaction body. The reactive part domain having the light collecting surface to the upper part of the reaction body forms a reducing zone by putting an inactive gas through the gas inlet. The reactive part domain having no light collecting surface to the upper part of the reaction body forms an oxidative region by putting steam through the gas inlet.

    Abstract translation: 提供了通过分解水生产氢的装置,不需要用于分离氢的分离膜,因为在与其它气体分离的状态下由反应器排出产生的氢。 通过分解水生产氢的装置包括反应部分和光接收部分(600)。 反应部分包括陶瓷载体,反应体(510,520,530,540)和分隔体。 金属氧化物涂覆在陶瓷载体上。 反应体包含气体入口(511,521,531,541)和排气口(512,522,532,542)。 隔板分隔两个或更多个反应体。 反应部分旋转或移动。 光接收部收集光并在反应体的上部含有一个以上的聚光面。 具有聚光面到反应体上部的反应性部分区域通过将惰性气体通过气体入口形成还原区。 在反应体上部没有聚光面的反应性部分区域通过将蒸汽通过气体入口而形成氧化区域。

    매체 순환식 연소기를 위한 고온 안정성 및 고 산소 운반용량을 가진 NiO/NiAl₂O₄구형 매체 물질 및 그제조방법
    19.
    发明公开
    매체 순환식 연소기를 위한 고온 안정성 및 고 산소 운반용량을 가진 NiO/NiAl₂O₄구형 매체 물질 및 그제조방법 失效
    具有高热稳定性和高氧载体容量的化学循环燃烧的球形NIO / NIAL2¤4中等材料及其制备方法

    公开(公告)号:KR1020050045399A

    公开(公告)日:2005-05-17

    申请号:KR1020030079461

    申请日:2003-11-11

    CPC classification number: B01J37/0009 B01J23/755 B01J37/0072 B01J37/08

    Abstract: 본 발명은 매체 순환식 연소기를 위한 고온 안정성 및 고 산소 운반 용량을 가진 NiO/NiAl
    2 O
    4 구형 매체 물질 및 그 제조방법에 관한 것으로, 그 목적은 먼저 활성물질로서 NiO 바인더로서 NiAl
    2 O
    4 로 구성된 NiO/NiAl
    2 O
    4 매체물질을 제조함에 있어서 높은 산화/환원 반응속도, 고강도, 고온 안정성 그리고 순환 사용을 위한 긴 수명 등이 확보된 상태에서 활성 성분인 NiO의 양을 더 증가시켜 높은 산소 운반능을 확보함과 동시에 단순화하여 제조된 매체물질 및 그 제조방법을 제공하는데 있다.
    본 발명의 구성은 매체 순환식 연소기를 위한 매체 물질의 제조방법에 있어서, Ni와 Al 성분을 갖는 전구체 용액들을 출발 물질로 하여 오일 적하 응집법에 의해 성형한 후, 소성 과정을 거침으로써 전체조성 중 산소 운반능을 갖는 니켈 옥사이드 활성 성분이 70~83wt%이고, 직경 1~2mm를 갖는 구형의 NiO/NiAl
    2 O
    4 물질을 제조하는 방법을 특징으로 하는 매체 순환식 연소기를 위한 고온 안정성 및 고 산소 운반 용량을 가진 NiO/NiAl
    2 O
    4 구형 매체 물질 및 그 제조방법을 특징으로 한다.

    수소저장용 탄소 나노 화이버 제조방법
    20.
    发明公开
    수소저장용 탄소 나노 화이버 제조방법 无效
    碳氢化合物储氢剂的制备方法

    公开(公告)号:KR1020050009006A

    公开(公告)日:2005-01-24

    申请号:KR1020030048244

    申请日:2003-07-15

    CPC classification number: D01F9/12 B82Y40/00

    Abstract: PURPOSE: Provided is a method for preparing a carbon nanofiber for hydrogen storage which has an excellent hydrogen storage, is stable, easily absorbs and desorbs hydrogen and is lightweight. CONSTITUTION: The method comprises the steps of uniformly mixing a solution containing one selected from the group consisting of Fe(NO3)3·9H2O, Fe(Cl2)3·9H2O, FeCl2, Ni(NO3) 3·6H2O, Ni(Cl2)3·6H2O and FeCl2, and/or a solution Ni and Fe; stirring the solution mixture with coprecipitating it with any one solution selected from (NH4)2CO3 and NaOH with maintaining a pH to be 5-11; stabilizing the solution for 1-60 hours after co-precipitation, and washing and filtering it to prepare a sample; drying the obtained sample at a temperature from a room temperature to 300 deg.C in air; preheating the dried one at a temperature from a room temperature to 600 deg.C for 3-120 hours; furnace cooling the preheated one; putting 0.1-100 g of the cooled sample in a quartz pipe and heating it at 100-1,100 deg.C for 1-70 hours with blowing atmosphere gas in; and cleaning sufficiently it with an inert gas, and reacting it for 1-120 hours with blowing at least one gas selected from H2, C2H4, C2H2, benzene, CH4, CO and CO2 with a velocity of 10-1,000 ml/min with maintaining the temperature of an electrical furnace of CVD to be 200-1.200 deg.C.

    Abstract translation: 目的:提供一种氢储存优良的碳纳米纤维制备方法,稳定,易吸收和解吸氢,重量轻。 方法:将包含Fe(NO 3)3·9H 2 O,Fe(Cl 2)3·9H 2 O,FeCl 2,Ni(NO 3)3·6H 2 O,Ni(Cl 2) 3·6H2O和FeCl2,和/或溶液Ni和Fe; 用选自(NH 4)2 CO 3和NaOH的任何一种溶液共沉淀,并保持pH为5-11搅拌溶液混合物; 在共沉淀后稳定溶液1-60小时,洗涤和过滤以制备样品; 将得到的样品在室温至300℃的空气中干燥; 在室温至600℃的温度下预干燥干燥物,持续3-120小时; 炉冷却预热的; 将0.1-100g冷却的样品放入石英管中,并在100-1100℃下加热吹入气氛气氛1-70小时; 并用惰性气体充分清洗,并以10-1,000ml / min的速度将其吹入1-120小时,吹入选自H 2,C 2 H 4,C 2 H 2,苯,CH 4,CO和CO 2中的至少一种气体,并保持 CVD电炉的温度为200-1200℃。

Patent Agency Ranking