Abstract:
PURPOSE: A medium composition for manufacturing hydrogen is provided to be applied to Three-Reactor Chemical-Looping Process (TRLC) including methane reduction reaction, water oxidation reaction, and air oxidation reaction, thereby separating carbon dioxide from methane while hydrogen is being produced. CONSTITUTION: A medium composition for manufacturing hydrogen comprises complex iron oxide represented by the chemical formula 1. [Chemical formula 1] MeaOb-FecOd. In the formula 1, Me is any one or more than two selected from nickel (Ni), copper (Cu), and molybdenum, and a to d are the value based on the mole ratio The a and c satisfy 0.1a / c0.25. The complex iron oxide is dipped in a supporter, and the content of the supporter inside the composition is 60-95 weight%. The supporter is selected from zirconia, alumina, silica, ceria, titania, and a mixture oxide thereof. The composition is applied to Three-Reactor Chemical-Looping Process (TRLC).
Abstract:
PURPOSE: A sulfur-iodine process for hydrogen production is provided to effectively perform liquid-liquid separation in the Bunsen reaction, to be able to improve the hydrogen production efficiency, and to have advantage of smooth operation of an electrodialysis device. CONSTITUTION: A sulfur-iodine process for hydrogen production comprises the Bunsen reaction process including a phase separation process of hydrogen iodide solution and sulfuric solution, an HI decomposition process, and a sulfuric acid decomposition process. The mixed hydrogen iodide solution of hydrogen iodide solution phase-separated in the Bunsen reaction process, and the hydrogen iodine solution remained after the HI decomposition is cooled to crystalize iodine contained in the mixed hydrogen iodide solution. The crystalized iodine is collected and fed back to the Bunsen reaction process. The mixed hydrogen iodide solution in which the crystalized iodine has been removed is fed back to the HI decomposition process.
Abstract:
PURPOSE: An improvement on a hydrogen storage performance evaluation method of a hydrogen storage performance evaluating device using a volume method is provided to improve a PCT(Pressure-Composition-Temperature) curve in consideration of a volume increase of a reactor caused by a heat transmission to a tube of the reactor of high/low temperatures and a system volume variation, thereby enhancing the accuracy of the hydrogen storage performance evaluation. CONSTITUTION: A hydrogen storage performance evaluation method of a hydrogen storage performance evaluating device using a volume method is as follows. Gas amounts within a charging vessel, a tube, and a reactor is calculated when reaching an equilibrium state in which constant pressure is maintained. A storing amount of a specimen absorbed in a hydrogen storing specimen within the reactor is calculated based on a difference between the calculated gas amount(n1) of the charging vessel and the calculated gas(n2) amount of the reactor. The step is repeatedly performed until reaching to desired pressure by successively increasing the pressure so that a PCT curve and a specimen storing amount are obtained. [Reference numerals] (AA) Pressure, kPa
Abstract:
본 발명은 동 정광을 원료로 한 동 제련 시 발생하는 부생 가스의 처리 방법에 관한 것으로, 상세하게는 a) 동정광, 산소부화공기(Oxygen enriched air) 및 실리카 플럭스(flux)를 고온의 자용로(Smelting Furnace)에 투입하는 동 매트의 제조 공정으로부터 이산화황을 함유한 부생가스를 얻는 단계; b) 상기 부생가스의 스크러버(scrubber)를 이용한 세척, 전기 집진기를 이용한 집진 및 건조탑을 이용한 건조를 순차적으로 수행하여 정제된 이산화황 가스를 얻는 단계; c) 상기 정제된 이산화황 가스에서 이산화황을 분리하여 고순도 이산화황 가스를 얻는 단계 및 d) 상기 이산화황 가스를 양이온 교환막이 구비된 전기화학셀의 양극에 주입하고 물을 상기 전기화학셀의 음극에 주입하고 전기화학 반응시켜 황산 및 수소를 얻는 단계;를 포함하여 수행되는 특징이 있다. 동, 정광, 동광, 황동광, 제련, 정련, 부생 가스, 이산화황, 수소
Abstract:
본 발명은 태양에너지를 이용한 물분해 수소제조장치에 관한 발명이다. 상세하게 본 발명의 물분해 수소제조장치는 금속산화물이 코팅된 세라믹 지지체, 가스투입구 및 가스배출구가 구비된 반응체와 두개 이상의 상기 반응체를 서로 분리시키는 격벽이 구비되며 회전 또는 이동 가능한 반응부; 및 광이 집광되며 상기 반응체 상부로 수광면이 하나 이상 구비되며 회전 또는 이동 가능한 수광부;를 포함하여 구성된다. 본 발명의 물분해 수소제조장치는 하나의 반응부에서 금속산화물의 산화 및 환원 반응이 동시에 일어나며 상기 반응부 또는 수광부의 주기적이고 연속적인 회전에 의하여 연속적으로 산소와 수소가 제조되는 효과가 있으며, 생성된 수소가 다른 기체와 분리된 상태로 반응기에서 배출되므로 단순히 수분을 응축시켜 고순도의 수소를 얻는 장점이 있다. 물분해, 수소, 태양, 광, 금속산화물, 2단계 열화학 싸이클
Abstract:
A device for producing hydrogen by decomposing water is provided to need no separation film for separation of hydrogen because generated hydrogen is exhausted from a reactor at a state of being separated with other gas. A device for producing hydrogen by decomposing water comprises a reactive part and a light receiving part(600). The reactive part comprises the ceramic supporter, reaction bodies(510, 520, 530, 540), and a partition. The metal oxide is coated on the ceramic support. A reaction body contains gas inlets(511, 521, 531, 541) and gas exhaust ports(512, 522, 532, 542). The partition separates two or more reaction bodies. The reactive part is rotated or mobile. The light receiving part collects light and contains one or more light collecting surfaces at an upper part of the reaction body. The reactive part domain having the light collecting surface to the upper part of the reaction body forms a reducing zone by putting an inactive gas through the gas inlet. The reactive part domain having no light collecting surface to the upper part of the reaction body forms an oxidative region by putting steam through the gas inlet.
Abstract:
본 발명은 매체 순환식 연소기를 위한 고온 안정성 및 고 산소 운반 용량을 가진 NiO/NiAl 2 O 4 구형 매체 물질 및 그 제조방법에 관한 것으로, 그 목적은 먼저 활성물질로서 NiO 바인더로서 NiAl 2 O 4 로 구성된 NiO/NiAl 2 O 4 매체물질을 제조함에 있어서 높은 산화/환원 반응속도, 고강도, 고온 안정성 그리고 순환 사용을 위한 긴 수명 등이 확보된 상태에서 활성 성분인 NiO의 양을 더 증가시켜 높은 산소 운반능을 확보함과 동시에 단순화하여 제조된 매체물질 및 그 제조방법을 제공하는데 있다. 본 발명의 구성은 매체 순환식 연소기를 위한 매체 물질의 제조방법에 있어서, Ni와 Al 성분을 갖는 전구체 용액들을 출발 물질로 하여 오일 적하 응집법에 의해 성형한 후, 소성 과정을 거침으로써 전체조성 중 산소 운반능을 갖는 니켈 옥사이드 활성 성분이 70~83wt%이고, 직경 1~2mm를 갖는 구형의 NiO/NiAl 2 O 4 물질을 제조하는 방법을 특징으로 하는 매체 순환식 연소기를 위한 고온 안정성 및 고 산소 운반 용량을 가진 NiO/NiAl 2 O 4 구형 매체 물질 및 그 제조방법을 특징으로 한다.
Abstract:
PURPOSE: Provided is a method for preparing a carbon nanofiber for hydrogen storage which has an excellent hydrogen storage, is stable, easily absorbs and desorbs hydrogen and is lightweight. CONSTITUTION: The method comprises the steps of uniformly mixing a solution containing one selected from the group consisting of Fe(NO3)3·9H2O, Fe(Cl2)3·9H2O, FeCl2, Ni(NO3) 3·6H2O, Ni(Cl2)3·6H2O and FeCl2, and/or a solution Ni and Fe; stirring the solution mixture with coprecipitating it with any one solution selected from (NH4)2CO3 and NaOH with maintaining a pH to be 5-11; stabilizing the solution for 1-60 hours after co-precipitation, and washing and filtering it to prepare a sample; drying the obtained sample at a temperature from a room temperature to 300 deg.C in air; preheating the dried one at a temperature from a room temperature to 600 deg.C for 3-120 hours; furnace cooling the preheated one; putting 0.1-100 g of the cooled sample in a quartz pipe and heating it at 100-1,100 deg.C for 1-70 hours with blowing atmosphere gas in; and cleaning sufficiently it with an inert gas, and reacting it for 1-120 hours with blowing at least one gas selected from H2, C2H4, C2H2, benzene, CH4, CO and CO2 with a velocity of 10-1,000 ml/min with maintaining the temperature of an electrical furnace of CVD to be 200-1.200 deg.C.