Abstract:
본 발명은 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템에 관한 것으로, 이를 위해 Fe 촉매를 사용하고, 석탄 또는 바이오매스 또는 천연가스에서 추출된 제 1합성가스를 공급받아 Fe 촉매와 반응시켜 합성연료를 획득하는 적어도 1개 이상의 제 1반응기(10); 및 Fe·Co 촉매 또는 Co 촉매를 사용하고, 상기 제 1반응기(10)로부터 반응 후 유출되는 제 2합성가스를 공급받아 Fe·Co 촉매 또는 Co 촉매와의 반응시켜 합성연료를 획득하는 제 2반응기(20);를 포함하여 이루어지되, 상기 제 1반응기(10)는 제 1합성가스에 포함된 H 2 /CO의 조성비를 0.6 ~ 1.2 범위로 공급받아 내부온도 및 압력과, 제 1합성가스의 유속을 조절하여 반응시 50 ~ 80%범위의 CO 전환율을 갖도록 구성하고, 상기 제 2반응기(20)는 제 1반응기(10)에서 반응 후 유출되는 제 2합성가스의 H 2 /CO의 조성비를 1.8 ~ 2.0 범위로 공급받아 내부온도 및 압력과, 제 2합성가스의 유속을 조절하여 반응시 90 ~ 95% 범위의 CO 전환율을 갖도록 구성되는 것을 특징으로 한다.
Abstract:
본 발명은 동적 기체분배기 및 그를 적용한 기포탑 반응기에 관한 것으로, 합성가스의 기포입자를 균일하게 전환시킴은 물론, 기포입자의 후단에 생기는 웨이크(wake:교란된 공기의 흐름)에 의해 기포기둥이 발생되는 현상을 억제하여 반응기본체 내에서의 반응효율을 증진시키기 위한 것이다. 본 발명에 따른 기포탑 반응기는 반응기본체와 동적 기체분배기를 포함한다. 반응기본체는 촉매를 함유하는 슬러리가 저장되며, 촉매를 함유하는 슬러리가 유입되는 합성가스와 반응하여 합성연료를 생성한다. 그리고 동적 기체분배기는 반응기본체의 하부에 연통되게 배치되며, 유입관을 통해 공급되는 합성가스를 회전으로 분산시키고, 분산된 합성가스를 균일한 기포입자로 전환시켜 반응기본체의 내부로 공급한다.
Abstract:
본원은 바륨크롬계 산화물로 코팅된 Ba 1-x Sr x Co 1-y Fe y O 3-δ 의 조성을 갖는 페롭스카이트형 이온전도성 산소 분리막, 그 제조방법, 상기 막을 이용한 산소 분리 공정을 제공한다. 바륨크롬계 산화물로 코팅된 본원의 막은 코팅되지 않은 분리막과 비교하여 현저히 향상된 산소투과도 및 열적 안정성을 가져 이산화탄소를 함유하는 공기로부터 산소 분리에 등에 유용하게 사용될 수 있다.
Abstract:
본 발명은 동시 용융함침에 의한 혼성 합금 촉매 담지체 제조 방법 및 그 합금 촉매 담지체에 관한 것으로, 그 목적은 담지 하고자 하는 금속염들을 기계적으로 동시 혼합 후, 혼합된 금속염을 녹여 다공성 지지체에 함침시켜 합금입자가 담지된 촉매 담지체들을 쉽고 빠르게 제조할 수 있는 동시 용융함침에 의한 혼성 합금 촉매 담지체 제조 방법 및 그 합금 촉매 담지체를 제공하는데 있다. 본 발명의 구성은 a) 둘 이상의 금속염들과 다공성 지지체 간의 혼합단계와; b) 공동 용융함침에 의한 금속염들 간의 융합단계와; c) 고온 소성과정을 통해 다공성 지지체 내 금속염들을 합금화 시키는 단계;를 포함하는 동시 용융함침에 의한 혼성 합금 촉매 담지체 제조 방법 및 그 합금촉매 담지체를 발명의 특징으로 한다.
Abstract:
본 발명은 동적 기체분배기 및 그를 적용한 기포탑 반응기에 관한 것으로, 합성가스의 기포입자를 균일하게 전환시킴은 물론, 기포입자의 후단에 생기는 웨이크(wake:교란된 공기의 흐름)에 의해 기포기둥이 발생되는 현상을 억제하여 반응기본체 내에서의 반응효율을 증진시키기 위한 것이다. 본 발명에 따른 기포탑 반응기는 반응기본체와 동적 기체분배기를 포함한다. 반응기본체는 촉매를 함유하는 슬러리가 저장되며, 촉매를 함유하는 슬러리가 유입되는 합성가스와 반응하여 합성연료를 생성한다. 그리고 동적 기체분배기는 반응기본체의 하부에 연통되게 배치되며, 유입관을 통해 공급되는 합성가스를 회전으로 분산시키고, 분산된 합성가스를 균일한 기포입자로 전환시켜 반응기본체의 내부로 공급한다.
Abstract:
PURPOSE: A metal and silica doped catalyst and a manufacturing method thereof are provided to uniformly dip metal particles with 20 wt% or higher concentration by developing pores and be thermally stable by not causing sintering between the metal particles at 700°C of high temperature heat treatment. CONSTITUTION: A manufacturing method of a metal and a silica doped catalyst comprises the following steps: manufacturing metal, metal oxide, or an alloy nano particles by decomposing organometallic compounds at high temperature by mixing with organic surfactant and organic solvent; coating the nano-particles with silica using micro emulsion; converting the metal and silica core-shell structure into the branched metal silicate structure using a high temperature hydrothermal reaction; and obtaining metal doped catalyst which is high deposited in silica by reducing and annealing the metal silicate structure under a high temperature hydrogen condition. The metal or metal oxide nano-particle and alloy nano-particle are manufactured in a non-aqueous system. [Reference numerals] (AA) Metal salt + organic surfactant; (BB) Thermal reduction or decomposition; (CC) Metal or metal oxide nanoparticles; (DD) Silica coating using microemulsion; (EE) Metal or metal oxide/silica core-shell nanoparticles; (FF) Hydrothermal reaction; (GG) Branch type metal silicate structure; (HH) High temperature plasticizing or reduction; (II) Metal/silica doped catalyst
Abstract:
A hydrogen storage performance evaluation apparatus using a volume method and a control method thereof are provided to prevent damage to instrument due to corrosion and leakage of a pipe and a connection part by controlling the temperature of a constant temperature chamber using a thermoelectric element. A hydrogen storage performance evaluation apparatus using a volume method comprises a main body(10), a hydrogen supply pipe, a helium supply pipe, a main pipe, a test cell(66), and a vacuum pipe. The main body has a constant temperature chamber(20) maintaining the fixed temperature with a thermoelectric element. The hydrogen supply pipe supplies hydrogen to the constant temperature chamber. The helium supply pipe supplies the helium which is inactive gas to the constant temperature chamber. The main pipe is arranged inside the constant temperature chamber and one end of the main pipe is supplied with each gas from the hydrogen supply pipe and the helium supply pipe and the other end has a outlet which is exposed from the outside of the constant temperature chamber. The test cell is detachably mounted at the end part of an outlet pipe(60) which is drawn out of the main body. The vacuum pipe is connected to the main pipe.
Abstract:
A methane reforming method and a method of producing high purity hydrogen gas by reacting water with composite metal oxide are provided to offer hydrogen of high purity and to produce liquid hydrocarbon easily. Synthetic gas containing hydrogen and carbon hydroxide is manufactured by partial oxidation of methane with inner oxygen of composite metal oxide containing Cu-Fe or Sn-Fe. The partial oxidation of the methane is performed in 600 ~ 1000 °C. The composite metal oxide has a molar ratio of Cu/Fe or Sn/Fe of 0.1 ~ 0.5. The composite metal oxide is manufactured by using a Fe precursor, a Cu precursor or a Fe precursor and a Sn precursor. The composite metal oxide of 5 ~ 50 weight% is dipped in zirconia, ceria, alumina or their mixture powder or a carrier. The composite metal oxide is manufactured by thermal treatment in a temperature of 700 ~ 1200°C.
Abstract:
PURPOSE: A phosphor and a method for producing the same are provided to achieve improved luminous efficiency and performance of the field emission display, while reducing costs and allowing for a mass production. CONSTITUTION: A phosphor is composed of Ga2O3 1 mole, GeO2 0.001 to 0.1 mole, Li2O 0.01 to 0.1 mole and MnO 0.001 to 0.01 mole with respect to ZnO 1 mole. A method for producing a phosphor comprises the steps of mixing ZnO, Ga2O3, GeO2, Li2O and MnO compound; performing a vacuum evacuation on the mixed compound; baking the vacuum evacuated compound for 9 to 12 hours at the temperature of 900 to 1200 Deg.C; cooling the baked compound; and classifying the cooled compound.