Abstract:
A portable biophotonic sensor measurement system is provided to obtain accurate output wavelength of a light source by using a built-in small wavemeter and measure the wavelength variation before and after antigen-antibody reaction accurately. A portable biophotonic sensor measurement system comprises a light source(408) emitting light, a first light distribution part(404) splitting the light emitted from the light source into first and second optical paths, an output intensity detection part detecting the output intensity of the light split into the first path, a second light distribution part(407) which splits the light split into the second path into third and fourth paths again, an output wavelength detection part detecting the wavelength of the light split into the third path, a biophotonic sensor(414) which passes or reflects the light split into the fourth path according to antigen-antibody reaction, a transmittance detection part(415) which detects is the light intensity transmitted through the sensor, and a reflectivity detection part(416,417) which is detects the light intensity reflected from the sensor.
Abstract:
A turbidimeter and a turbidity measuring method using optical cavity are provided to determine the turbidity in a receptacle by detecting the decrease rate of the light intensity measured in the optical detector. A turbidimeter using optical cavity comprises a light source(100) outputting light of specific wavelength, a receptacle(140) in which a liquid to measure the turbidity is stored, an optical cavity(110) in which high reflectivity mirrors are arranged face to face in order to make the output of the light source penetrate through the liquid in the receptacle repetitively, a light detecting part(120) measuring the intensity of the light outputted from the optical cavity after the repetitive penetration of the liquid, and a controller(160) calculating the turbidity of the liquid by measuring the decrease rate of the light intensity which repetitively penetrates the liquid.
Abstract:
A guided mode resonance filter and a biosensor using the same are provided to obtain a resonant spectrum having high symmetry and a sharp shape by using a material having a low refractive index. A guided mode resonance filter includes a substrate(110) and a grating layer(120). The substrate has a first refractive index. The grating layer is formed on the substrate as having a second refractive index larger than the first refractive index. The first refractive index is 1.24 to 1.38. The substrate is composed of one or more elements selected from a group including a polymer resin obtained by polymerizing MgF2, PTFE(Poly Tetra Fluoro Ethylene), and PMMA(Poly Methyl Methacrylate), and a monomer, a first polymer material, a second polymer material, a third polymer material.
Abstract:
A micro-sized semiconductor light-emitting diode having an emitting layer including silicon nano-dots, a semiconductor light-emitting diode array, and a fabrication method thereof are provided to improve light-emitting efficiency by forming a light-emitting layer with a thin film including silicon nano-dots. A light-emitting layer(106) is formed on an upper surface of a silicon substrate(100). The light-emitting layer includes silicon nano-dots. A hole injection layer(104) and an electron injection layer(110) are formed opposite to each other between the light-emitting layers. A transparent conductive electrode layer(112) is formed on the electron injection layer. A first electrode(108) and a second electrode(118) are formed on the hole injection layer and the transparent conductive electrode layer to inject electrons. The light-emitting layer is composed of an amorphous silicon nitride.
Abstract:
본 발명은 고속으로 양자 암호 키를 전송할 수 있는 자동 보상 양자 암호 송수신장치 및 방법에 관한 것으로 양자 암호 송신 장치는 파장 변환부,광 감쇠기, 광 위상 변조기 및 패러데이 미러를 포함하고, 양자 암호 수신 장치는 편광 분할기, 광 커플러, 광필터 및 광자 검출기를 포함하여 단일 광자가 전송되는 양자 경로상의 광섬유의 레일리이 산란에 의한 전송 속도의 한계를 극복하기 위한 시스템 및 방법에 관한 것이다. 양자 암호, 양자 키 분배
Abstract:
본 발명은 고효율 반도체 발광 소자에 관한 것으로, 본 발명에 따른 반도체 발광 소자는 하부전극, 발광층 및 상부전극을 포함하는 반도체 발광 소자에 있어서, 상기 발광층은 실리콘 나노 결정을 포함하고, 상기 발광층 상부에 서로 다른 밴드 갭을 갖는 박막을 교대로 성장시킨 다층 구조의 도핑층을 포함한다. 이와 같은 서로 다른 밴드갭을 갖는 박막을 교대로 성장시킨 다층 구조의 도핑층을 발광층 상부에 포함시킴에 따라서, 발광층으로의 캐리어 주입효율을 증가시켜 궁극적으로 발광 효율을 증가시킨다. 발광, 소자, 효율, 밴드갭
Abstract:
PURPOSE: A biochip and a method for quantitatively injecting a specimen using the same are provided to apply a simple fluid channel structure in the biochip without a complicated pumping control device. CONSTITUTION: A biochip(100) includes a reaction chamber(114), an injection channel(112), and a discharging channel(116). The reaction chamber includes a reagent for detecting a specimen. The injection channel includes a specimen injection channel(112i) and a specimen bypass channel(112d). The discharging channel is in connection with a specimen discharging channel(112o) and the specimen bypass channel. A method for quantitatively injecting a specimen includes the following steps of: injecting and bypassing a specimen through the specimen injection channel and the specimen bypass channel, respectively; blocking the specimen discharging channel in connection with the reaction chamber by the specimen transferred through the specimen bypass channel; and discharging excessive specimens through the specimen bypass channel by air.
Abstract:
PURPOSE: A label-free biosensor is provided to form optical fiber and photonic crystal on a same silicon substrate without external light source and spectrometer. CONSTITUTION: A label-free biosensor comprises: a substrate; a reaction inducing part(30) for inducing bio antigen-antibody reaction; and reaction detection part(20) for detecting a bio antigen by quantity of light. The substrate is formed of silicon. The substrate has an insulator(40) and the reaction detection part. The light detection part has a light emission part(21), an optical fiber(22), a light receiving part(23).
Abstract:
PURPOSE: A high efficiency semiconductor light emitting device and a photonic bio sensor are provide to improve luminous efficiency by forming a transparent doping layer with multilayer structure on the upper side of a light emitting layer. CONSTITUTION: A semiconductor light emitting device includes a bottom electrode, a light emitting layer, and a top electrode. The light emitting layer includes a silicon nano crystal. A doping layer(200) with multilayer structure is formed on the upper side of the light emitting layer by alternatively growing thin films with different band gaps A hole injection layer is formed between the bottom electrode and the light emitting layer. A transparent conductive electrode(130) is formed on an electron injection layer(120).
Abstract:
PURPOSE: An optical biosensor measurement apparatus with an auto-colimator is provided to improve measurement accuracy by accurately aligning the angle of an optical biosensor and incident light using an auto-colimator. CONSTITUTION: An optical biosensor measurement apparatus(20) with an auto-colimator comprises a light source(21), a beam splitter(22), a lens(23), an optical biosensor(24), an image surface(25), and tilt mounts(26,27,28). The light source emits light. The beam splitter reflects the emitted light. The lens focuses the reflected light and sends the light to the beam splitter. The light reflected from the beam splitter is sent to the optical biosensor. A phase is formed in the image surface by the focused light. The tilt mounts control the angle between the optical biosensor and incident light.